
 

1 

Scalable and generalizable deep learning for battery state of 

health estimation in on-road electric vehicles 

Hao Jinga,b, Jianyao Huc, Shiqi (Shawn) Oua,b,*, Zhilong Lvd, Renzhi Lyue, Jingyuan Zhaof,* 

aSchool of Future Technology, South China University of Technology, Guangzhou 511442, Guangdong, China 

bGuangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou 510335, Guangdong, China 

cChina Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 510610, Guangdong, China 

dHubei Longzhong Laboratory, Hubei University of Arts and Science, Xiangyang 441000, Hubei, China 

eSchool of Mechanical Engineering, Beijing Institute of Technology, Beijing 100811, China 

fInstitute of Transportation Studies, University of California Davis, Davis 95616, CA, USA 

*Corresponding authors.  

E-mail addresses: sou@scut.edu.cn (S. Ou), jyzhao@ucdavis.edu (J. Zhao). 

Abstract: Accurate battery health diagnostics are essential for timely maintenance, replacement, and the safe 

operation of electric vehicles (EVs). For on-road EVs, leveraging operational data for accurate state-of-health 

(SOH) estimation remains challenging due to varied degradation patterns across different driving conditions, 

vehicle types, and battery chemistries. Thus, developing an on-road-specific efficient feature system and a 

generalized SOH estimation framework adaptable to diverse EV models and chemistries is essential. To address 

these limitations, this study proposes a vehicle operational data-driven approach that integrates multi-dimensional 

feature fusion with a hybrid deep neural network architecture. Specifically, 12.83 million on-road data points 

spanning a wide range of vehicle types and battery chemistries are processed. Capturing representational, driving 

behavioral, and electrochemical characteristics, this study proposes a three-dimensional feature system 

comprising shallow, intermediate, and deep descriptors. To tackle challenges posed by long time spans and the 

limited effectiveness of Transformer models on multivariate inputs, a hybrid framework combining temporal 

convolutional networks with an enhanced iTransformer is developed, incorporating a differential attention 

mechanism to suppress attention noise. Experimental results demonstrate that the proposed method achieves high 

accuracy across two test sets, with an average R2, MAPE, MAE, and RMSE of 98.88%, 0.35%, 0.31%, and 0.40%, 

respectively. This represents an 81.4% reduction in RMSE compared to the best-performing baseline. Data 

scarcity experiments using reduced training data demonstrate that even when the training set is decreased from 

80% to 30%, model performance remains stable, with the RMSE remaining below 0.16%. Feature attribution 

analysis using Shapley additive explanations (SHAP) confirms the indispensability of all three feature dimensions, 

with driving behavior features being particularly influential. Following feature optimization, training time is 

reduced by 17.3%. This study presents a robust SOH estimation framework tailored for intelligent cloud battery 

management systems, proactive maintenance, and the safe operation of EV batteries in practical environments. 
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1. Introduction 

1.1. Background 

Electric vehicles (EVs), known for producing zero tailpipe emissions, have emerged as a key strategy 

for reducing dependence on fossil fuels and advancing carbon neutrality. Over the past decade, the global 

EV industry has expanded rapidly, particularly in China, where annual production surpassed 10 million units 

by November 2024 [1–3]. Lithium-ion batteries, the primary energy storage technology for EVs, are widely 

adopted due to their high energy density and long cycle life [4,5]. However, the electrochemical processes 

intrinsic to lithium-ion batteries inevitably lead to irreversible aging over time. As aging progresses, battery 

capacity diminishes while internal resistance increases, compromising vehicle range, energy efficiency, and 

overall reliability. In addition to performance deterioration, battery aging can also elevate safety risks [6,7]. 

To ensure the long-term performance, safety, and lifespan of EV batteries, it is therefore critical to accurately 

assess battery aging, refine battery management system (BMS) strategies, and implement timely 

maintenance interventions [8,9]. The state of health (SOH) metric is commonly used to quantify battery 

aging, typically defined as the ratio of the current remaining capacity to the initial rated capacity, or 

alternatively, the ratio of the current internal resistance to that measured at the point of manufacture [10,11]. 

1.2 Literature review 

SOH estimation methods are generally divided into direct measurement, model-based, and data-driven 

approaches [12–14]. Direct measurement methods, such as electrochemical impedance spectroscopy and 

ampere-hour integration [15–17], rely on high-precision instruments, involve long testing durations, and are 

susceptible to environmental disturbances, limiting their applicability in real-time scenarios [18,19]. Model-

based approaches primarily include equivalent circuit models (ECMs) and electrochemical models [20–22]. 

The ECM simulates battery behavior using electrical components such as resistors and capacitors [23,24], 

while the latter captures electrochemical processes at the microscale with high accuracy. However, both 

methods face significant challenges in acquiring model parameters and adapting to dynamic conditions and 

environmental variability, which hinder their application in real-time SOH estimation for EVs [12,25]. The 

availability of extensive battery data, combined with advancements in computational resources, has 

significantly enhanced the effectiveness of data-driven methods in SOH estimation [26]. These methods 
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extract health features from operational data and utilize machine learning models to characterize the 

nonlinear relationship between these features and SOH [27]. Common approaches include conventional 

machine learning, deep learning, and hybrid models [28]. In traditional machine learning, support vector 

machines, Gaussian process regression, random forests, and decision trees are widely used for SOH 

estimation [29–32]. However, their performance tends to degrade as the dataset size increases [33]. In 

contrast, deep learning methods such as convolutional neural networks (CNNs), recurrent neural networks 

(RNNs), and long short-term memory (LSTM) networks can automatically extract features from large 

datasets and capture complex patterns [34–37]. Transformer models, which incorporate self-attention 

mechanisms, effectively overcome the limitations of recurrent architectures in handling long sequences 

[38,39]. To improve both estimation accuracy and model interpretability, physics-informed neural networks 

have been introduced [40]. Moreover, Che et al. introduced a self-supervised learning framework that 

improves SOH estimation accuracy using fewer labeled samples [41]. In addition, Tao et al. developed a 

physics-informed model that integrates thermodynamic and kinetic parameter estimation, achieving a 25-

fold increase in prediction speed and maintaining an average accuracy of 95.1% under varying conditions, 

thereby demonstrating the efficacy of combining physics-based feature engineering with learning-based 

methods [42]. To further address the limitations of individual models, hybrid deep learning approaches have 

garnered attention [43,44]. For example, Zhao et al. combined CNNs with an enhanced Transformer to create 

a transfer learning framework, enabling rapid training and accurate predictions across various battery 

materials [45,46]. Similarly, Lv et al. integrated CNNs with a fast attention mechanism, achieving accurate 

SOH estimation while reducing GPU power consumption by over 50% compared to traditional Transformer 

models [47]. 

Despite these advances, the majority of the techniques mentioned above rely on laboratory-collected 

data under controlled conditions. These data are typically obtained using high-precision charge-discharge 

equipment designed for battery aging tests, which often involve lengthy test cycles. On the other hand, field 

data collected by BMS face challenges such as limited sampling frequency, incomplete charge-discharge 

cycles, and high data heterogeneity. However, due to their closer alignment with actual application 

environments, field data offer greater practical value. Accordingly, a study utilized six available field 

datasets and designed multiple independent feature extractors to capture aging information across different 
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scales, thereby enabling precise estimation of SOH under varying battery chemistries and operational 

conditions [48]. To address the challenge of estimating the remaining capacity of second-life batteries with 

minimal field data, another study proposed a deep generative transfer learning framework. This framework 

generates voltage response dynamics data across various SOC conditions. It employs a deep correlation 

alignment (CORAL) method to rapidly and accurately estimate remaining capacity using only limited field 

data [49]. However, despite the aforementioned data experiments being as close as possible to actual 

operation, the operation of EVs in real-world road conditions is even more complex [50]. The diverse and 

highly dynamic influencing factors present on real roads, such as constantly changing ambient temperatures, 

relative humidity, and load variations caused by road condition uncertainties, as well as importantly, 

differences in driving behavior, including charging habits, significantly impact battery performance and 

aging processes [51,52]. Furthermore, models based solely on cell-level data have certain limitations, as a 

battery pack consists of multiple cells, each of which may exhibit performance discrepancies due to 

manufacturing variations. At the same time, the overall performance of the battery pack in the vehicle is also 

influenced by operational factors such as thermal management, energy scheduling, and system coordination, 

which are difficult to accurately simulate under cell-level field data conditions [53]. To obtain more accurate 

and reliable battery SOH estimates for EVs, it is crucial to model operational data at the pack level in on-

road conditions. Accordingly, several studies have applied models such as the gated recurrent unit (GRU), 

XGBoost, LSTM, and SVR to estimate battery capacity in actual vehicles [51,54–56]. Similarly, Zhao et al. 

employed particle swarm optimization to fine-tune the hyperparameters of an extreme learning machine 

neural network for accurate SOH estimation [57]. However, these studies are often limited to a small number 

of the same vehicle types, with training and testing sets usually divided within the same vehicle, lacking 

separation between cross-type or cross-vehicle datasets, which limits the generalization and application of 

the models. Thus, Deng et al. utilized operational data from 20 EVs to achieve a prediction error of less than 

1.6% using a sequence-to-sequence architecture and over 20 features [58]. In summary, despite promising 

progress, existing methods often fall short in generalization to on-road vehicle operations involving diverse 

vehicle types and battery chemistries, as well as in efficient feature engineering, which motivates this study. 

1.3 Contribution of this work 

Despite recent advances in battery health estimation, several challenges persist in on-road applications. 

First, most existing methods remain focused on SOH estimation at the cell level. Research on full vehicle 
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battery systems is limited, with most studies relying on modeling using a single battery chemistry and vehicle 

type. The generalization capability of these models remains insufficiently validated, and only a small fraction 

of studies have made on-road vehicle data publicly available. Moreover, a critical challenge lies in balancing 

feature redundancy and computational efficiency when extracting health features from real-vehicle datasets. 

Several studies incorporate over 20 features [53–56,58], which significantly increases both computational 

cost and model complexity. Such high-dimensional feature sets also introduce risks associated with the curse 

of dimensionality, including overfitting, which limits their practical deployment. Furthermore, studies based 

on road operation battery pack-level data often rely on numerous representational parameters, failing to 

effectively utilize highly relevant driver behavior information from on-road vehicles, and lacking an in-depth 

exploration of electrochemical characteristics. Moreover, most existing studies do not systematically 

evaluate model performance under data-scarce conditions, which is particularly critical given the practical 

constraints of data availability and computational resources. Finally, the interpretability of most data-driven 

models remains limited. These models often function as “black boxes,” providing outputs without 

transparent reasoning. Understanding how such models arrive at specific predictions or decisions remains a 

major barrier to trust and adoption. To address these challenges, this study proposes a three-dimensional 

health feature system tailored for real-vehicle applications, combined with a temporal convolutional network 

(TCN)– a Specialized iTransformer hybrid deep learning architecture. As shown in Fig. 1, this framework 

enables accurate SOH estimation and robustness under data scarcity for EVs under on-road operating 

conditions. The main contributions are summarized as follows. 

(a) A comprehensive dataset is compiled from the historical operational data of ten EVs, spanning diverse 

vehicle types and battery chemistries. This high-quality dataset will be made publicly available to support 

broader research efforts, promote transparency, and enhance academic impact. 

(b) A compact and interpretable three-dimensional feature system is developed, comprising only seven 

variables that capture information from vehicle-level representation, driver behavior patterns, and internal 

electrochemical parameters. 

(c) To address the challenges posed by long time-series data and high feature dimensionality, a hybrid deep 

learning model is proposed that combines a TCN with an iTransformer. This model incorporates a 

differential attention mechanism to mitigate attention noise and enhance robustness. The framework is 
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validated across multiple vehicle types and datasets, demonstrating strong generalization and robustness in 

the face of data scarcity. 

(d) Model interpretability is enhanced through Shapley additive explanations (SHAP), which quantify the 

contribution of each feature dimension to the estimation outcome. This analysis informs feature optimization, 

leading to improved model efficiency and enhanced SOH estimation accuracy. 

 

Fig. 1. Research framework. 
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1.4 Organization of the paper 

This paper is structured into five sections. Section 1 introduces the research background and motivation.  

Section 2 describes the data sources, provides an overview of the dataset, and outlines the data processing 

workflow. Section 3 explains the generation of SOH labels, the construction of the three-dimensional health 

feature framework, and the architecture of the proposed hybrid neural network model. Section 4 presents the 

SOH estimation results and includes a SHAP-based interpretability analysis. Finally, Section 5 summarizes 

the key findings and implications of the study. 

2. Data acquisition and pre-processing 

2.1 Source of data 

To better represent on-road operating conditions of EVs, this research utilizes data obtained from the 

Guangzhou New Energy Intelligent Vehicle Big Data Monitoring Platform. The study involves 10 fully EVs, 

with a total of approximately 12.83 million data points collected over one year. To comprehensively improve 

and validate the robustness and generalization ability of the algorithm, these 10 vehicles represent different 

types of EVs, including both passenger cars and commercial vehicles, and the battery materials include 

lithium iron phosphate (LFP) and nickel cobalt manganese (NCM) batteries. The sensor signals of these 

vehicles are transmitted to the BMS via the in-vehicle controller area network (CAN) bus, and then uploaded 

by the onboard telematics box (T-BOX) at a fixed sampling frequency to the signal base station, which 

subsequently transfers the data to the original equipment manufacturer (OEM) and the big data monitoring 

platform for storage. Table 1 presents the specific information for each vehicle. The collected data includes 

over 70 signals such as data sampling time, drive motor data, power battery data, and vehicle speed. 

Considering that an excessive amount of data may lead to memory overflow and prolonged processing times, 

this study retains only 11 data points closely related to battery health, which include: data sampling time, 

vehicle speed, charging status, cumulative mileage, total voltage, current, state of charge (SOC), and cell-

level parameters such as the minimum and maximum voltage and temperature, and battery pack structure 

information is provided in Supplementary Note 1. Fig. 2 illustrates the distribution of raw sampling data for 

vehicle #1 for one year. It shows that the charging conditions and environmental temperature during on-road 

operation significantly differ from those in laboratory tests, presenting more complex characteristics. 
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Table 1. Overview of sampled vehicle characteristics. 

Vehicle number Vehicle type Battery 

material 

Initial rated 

capacity/Ah 

Number of 

data points 

Cumulative 

Mileage/km 

Sampling 

frequency/Hz 

Vehicle#1 Passenger vehicle NCM 150 954754 69043 0.1 

Vehicle#2 Passenger vehicle NCM 150 998243 73950 0.1 

Vehicle#3 Passenger vehicle NCM 160 997098 79440 0.1 

Vehicle#4 Passenger vehicle NCM 160 1150999 96279 0.1 

Vehicle#5 Passenger vehicle NCM 160 1096073 114431 0.1 

Vehicle#6 Passenger vehicle NCM 160 501031 27318 0.1 

Vehicle#7 Passenger vehicle LFP 120 5304111 32496 0.5 

Vehicle#8 Electric bus LFP 645 675236 82668 0.1 

Vehicle#9 Electric bus LFP 645 443806 43988 0.1 

Vehicle#10 Electric bus LFP 505 715956 27677 0.1 

2.2 Data cleaning and processing 

Laboratory environments offer stable, interference-free conditions for battery testing, whereas on-road 

vehicle sensor data are subject to environmental disturbances such as weather, surrounding infrastructure, 

and data transmission inconsistencies. Consequently, the quality of data uploaded to cloud platforms is often 

variable. As illustrated in Fig. 2(a, b), unlike the full SOC cycling between 0% and 100% typically performed 

in laboratories, on-road charging events usually begin around 30%–40% SOC and terminate at 80%–90%. 

Fig. 2(c) shows that ambient operating temperatures range from approximately 0 to 30°C, in contrast to the 

controlled, constant-temperature conditions of laboratory tests. Fig. 2(d, e) highlight the dynamic variations 

in voltage and current during vehicle operation, underscoring the complexity of on-road load profiles 

compared to the constant loads used in lab environments. Fig. 2(f–i) depict intra-pack variations in cell 

voltages and temperatures. Notably, Fig. 2(f) shows some cell voltage readings exceeding 6V—values that 

violate the physical limits of lithium-ion chemistry—suggesting likely sampling or transmission errors. Fig. 

2(h, i) indicate that cell temperatures fluctuate between 10 and 40°C, driven by external conditions and usage 

patterns. In summary, vehicle-collected field data differ substantially from laboratory benchmarks and often 

contain noise and anomalies. Thus, rigorous data cleaning is imperative to ensure the reliability and utility 

of field-collected battery datasets. 
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Fig. 2. Raw data distributions for Vehicle #1. (a) Starting SOC during charging. (b) Ending SOC during charging. 

(c) Ambient temperature. (d) Total battery pack voltage. (e) Total battery pack current. (f) Maximum single-cell 

voltage. (g) Minimum single-cell voltage. (h) Maximum battery temperature. (i) Minimum battery temperature. 

The data cleaning process in this study consists of six steps, shown in Fig. 3. First, duplicate data is 

removed based on the sampling time. Since environmental temperature significantly impacts battery 

performance and can vary greatly under actual vehicle operating conditions, the second step involves 

querying historical environmental temperature data using Visual Crossing Weather based on vehicle location 

information, and matching it with the corresponding vehicle data [59]. In the third step, outliers are detected 

using the Interquartile Range (IQR) approach and subsequently substituted with adjacent values. After these 

steps, the next step is to categorize the vehicle data into driving, charging, and resting segments based on the 

vehicle charging status and speed information. Since current fluctuations are significant and intense during 

vehicle operation, and due to the large sampling intervals, using driving segments to calculate health features 

and labels may lead to substantial errors. In contrast, as shown in Fig. 3(d), the current variation in charging 

segments is stepwise and remains stable for a period. The features and labels calculated from these segments 

are more accurate [53,57,58]. Therefore, this study extracts features and calculates labels based on the 

processed charging segments. However, during charging, certain charging segments are short in duration 
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and show minimal changes in SOC, which may lead to insufficient internal reactions, unstable chemical 

properties, and large fluctuations in the calculation results. Thus, this study sets a threshold for filtering 

charging segments, retaining only those where the SOC changes exceed 20% [53,57]. The filtered charging 

segments undergo missing value detection and are then filled using linear interpolation. After processing 

through these six steps, the segments are used as the dataset for feature extraction and label calculation, then 

for model training. 

 

Fig. 3. Data cleaning steps. (a) Three steps: removal of duplicates, matching with environmental temperature, and 

outlier handling. (b) Data slicing. (c) Two steps: removal of invalid segments and interpolation of missing values. 

(d) Visualization of processed segments. 
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3. Method for on-road SOH estimation 

After preprocessing, the raw vehicle data is converted into stable charging segments, from which SOH 

labels and health features can be extracted. These extracted labels and features are then used for model 

construction and training. 

3.1 Reference SOH calculation 

The SOH of a battery is generally quantified as the ratio between its present full charge capacity and 

the original capacity specified at the time of manufacture [53,57]. Since this value cannot be directly obtained 

from the data collected from the vehicle, it needs to be indirectly calculated using the collected current and 

SOC data. The detailed calculation methods are provided in Equations (1) and (2) [58] 

now

rated

SOH
C

C
=                                                           (1) 

2 2

1 1

2 1 12

now

( )d ( )d
t t

t t

t t t

I t t I t t

C
SOC SOC DOC

= =
−

 
                                               (2) 

where
nowC  denotes the present full charge capacity of the battery, while 

ratedC  indicates the factory-specified 

rated capacity. ( )I t  represents the instantaneous current during vehicle operation, and SOC is used to 

indicate the state of charge. 
1t and

2t  correspond to the start and end times of the charging process, 

respectively. DOC refers to the depth of charge. As shown in Fig. 3(c), this study has filtered out segments 

with a DOC less than 20%, as smaller DOC values lead to fluctuations in the computed values and larger 

errors. In comparison, larger DOC values result in too few remaining segments [53,57]. 

Through the above steps, SOH labels for the ten vehicles are calculated. Fig. 4 displays the SOH labels 

for four randomly selected vehicles from this set. However, the computed SOH labels exhibit considerable 

noise, which can be attributed to factors such as sensor inaccuracies, low data collection frequency, and 

signal transmission interference. Therefore, preprocessing of the SOH labels is necessary [53,57,58]. To 

address this, the study first applies a Z-score filtering algorithm to detect and remove outliers in the capacity 

data, effectively minimizing the impact of anomalous points on the overall capacity curve. The Z-score 

algorithm computes the standardized score of each data point, identifying and eliminating values that deviate 

significantly from the mean. This approach removes extreme outliers while preserving the core data structure, 
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thereby improving the robustness of subsequent analysis. The Z-score formula is provided in Supplementary 

Note 2. 

 

Fig. 4. SOH reference labels calculated for partial vehicles. (a) SOH reference labels of Vehicle#1. (b) SOH 

reference labels of Vehicle#3. (c) SOH reference labels of Vehicle#4. (d) SOH reference labels of Vehicle#5. 

As shown in Fig. 4, the SOH labels still exhibit significant fluctuations after removing the gray outliers. 

For on-road vehicle applications, focusing on the SOH value of each charging segment is unnecessary, as it 

can be significantly influenced by factors such as the environment, driving habits, and charging station 

locations. Instead, the focus for EVs should be on the degradation trend of the SOH [52,57,58]. As a result, 

it is essential to apply smoothing to the SOH values in order to qualitatively characterize the degradation 

trend. This study uses the locally weighted scatterplot smoothing (LOWESS) algorithm for data smoothing 

[60]. The red solid line illustrates the smoothing effect in Fig. 4. This indicates that the degradation patterns 

among different vehicles vary significantly, which may result from multiple influencing factors, including 

ambient temperature, individual driving behavior, and other environmental conditions. The validation of the 

proposed label calculation method is presented in Supplementary Note 3.  

3.2 Health feature extraction 

The selection of appropriate health features can significantly enhance the effectiveness of SOH 

estimation [1,54–58]. This study utilizes the processed EV charging segments to propose a three-dimensional 

feature system, comprising shallow, intermediate, and deep-level features, for the first time. This system 
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encompasses a range of multidimensional features, including battery voltage, current, statistical user 

charging and discharging habits, and internal resistance and capacitance, aiming to capture the effects of 

various factors on battery degradation characteristics in a comprehensive and multi-layered manner. 

3.2.1 Shallow dimensional features—raw sensor health features 

It first extracts relevant health features based on direct sampling data of the vehicle. As is well-known, 

with increasing battery cycle counts, irreversible changes in the crystalline structure of internal electrode 

materials can occur, which is the main cause of gradual battery performance degradation [1,2]. However, 

unlike laboratory data, the charge-discharge behavior of on-road vehicles does not always follow standard 

cycle patterns. As shown in Fig. 2(a, b), vehicles often do not fully discharge and recharge the battery during 

each use. Therefore, to better reflect actual EV usage scenarios, this study selects cumulative mileage and 

cumulative charge-discharge capacity, which are highly correlated with battery cycle counts, as health 

features [57,61]. Cumulative mileage reflects the operational load on the battery during actual use. In contrast, 

cumulative charge-discharge capacity directly quantifies the total energy transferred to the battery, which 

can intuitively capture key factors of battery degradation. 

Furthermore, the health status of the battery is closely related to current intensity and charging methods, 

particularly high currents and fast charging behaviors, which can significantly damage the battery. Excessive 

current can generate high heat within the battery, accelerating the aging of the electrode material and 

electrolyte decomposition. Additionally, excessive current may trigger the formation of lithium dendrites, 

which, in severe cases, can cause internal short circuits, thereby shortening the lifespan of the battery [62]. 

Based on these influencing factors, this study incorporates the average current and average power calculated 

for each charging segment as health features. 

Temperature is considered a crucial external factor that impacts both the efficiency and lifespan of 

lithium-ion batteries. Previous research indicates that these batteries achieve optimal performance when 

operating within the range of 20 to 25°C. Elevated temperatures can accelerate electrolyte degradation and 

electrode aging, while excessively low temperatures reduce lithium-ion mobility and raise internal resistance 

[63]. To reflect the influence of temperature on battery condition, this study incorporates the deviation of the 

average battery temperature, collected by the BMS, from 25°C as a model input. Additionally, ambient 
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temperature data are incorporated to assess the potential impact of external conditions on battery 

performance. 

3.2.2 Intermediate dimensional features—behavior-derived health features 

The key difference between real-vehicle and laboratory battery data lies in user variability. In laboratory 

settings, batteries are typically tested under standardized operating procedures, whereas in real-life usage, 

habits vary across EV users. Even with the same vehicle type, the battery degradation trends can vary 

significantly between different users. Studies have shown that, with L1 slow charging and DC fast charging, 

battery SOH after 10 years can differ by more than 20% under the same driving mode [62]. Therefore, it is 

essential to identify how various user behaviors collectively influence battery condition. Given that the 

dataset is organized by charging sessions, this study begins by analyzing the frequency of fast charging 

cycles. Fast charging is defined as the number of charging sessions where the average charging power 

exceeds 35 kW. Additionally, deep discharge and charge cycles cause irreversible damage to lithium 

batteries, as widely studied and confirmed [64,65]. This study includes the cumulative number of deep 

discharge and charge cycles as important feature variables. Deep discharge is defined as discharging with 

SOC below 15%, while deep charging is defined as charging with SOC above 95%. 

3.2.3 Deep dimensional features—physical model-derived health features 

Deep dimensional features are constructed based on shallow and intermediate features, allowing further 

investigation into the internal electrochemical mechanisms of the battery. These processes involve extracting 

key parameters, including internal resistance and polarization capacitance. As EVs operate, the resistance of 

the battery pack tends to rise with the decline of SOH, a phenomenon closely related to changes in 

electrochemical characteristics [38,51]. As the battery ages, the internal chemical reactions become 

increasingly incomplete, and electrode materials may undergo crystallization or morphological changes. At 

the same time, the electrolyte concentration may decrease, leading to an increase in internal resistance. 

Additionally, as the number of charge and discharge cycles increases, the electrolyte inside the battery may 

degrade or deplete, reducing ionic conductivity and further increasing the internal resistance of the battery. 

Due to the increased internal resistance, the energy conversion efficiency during charge and discharge cycles 

decreases, manifesting as a gradual decline in battery voltage and capacity. Therefore, internal resistance, an 
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important feature of battery degradation, reflects the degree of battery aging and typically increases as SOH 

decreases [51]. 

 

Fig. 5. Parameter identification based on equivalent circuits to obtain deep internal health features. (1a) Equivalent 

circuit model and its discretized equations. (1b-1c) Flowchart of the FFRLS-based parameter identification 

process. (2a, 2c) Voltage estimation results and corresponding errors for two arbitrarily selected segments. (2b, 

2d) Identified values of three parameters corresponding to the two segments. 

The ECM is commonly used to simulate the dynamic behavior of internal resistance and other 

characteristics in lithium batteries. Typical ECMs include the Rint, Thevenin, and RC models [54]. Among 

them, the Thevenin model is frequently adopted in battery modeling due to its high accuracy in simulation 
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and relatively low complexity and parameter count. Thus, this study uses the Thevenin model for battery 

pack modeling and parameter identification. The specific flowchart is shown in Fig. 5. The Thevenin model, 

as illustrated in Fig. 5(1a), consists of polarization capacitance CD, polarization resistance RD, and 

polarization voltage DU , with load current and voltage denoted as LI  and LU , respectively, and open-circuit 

voltage and internal resistance denoted as ocvU  and 0R . Based on Kirchhoff current-voltage law, the 

mathematical expressions for the Thevenin model are given in Equations (3) and (4).  

d

d

D D
LD

D

U U
C I

t R
+ =                                                                  (3) 

0L Locv dU U U I R= + +                                                                (4) 

To apply the above mathematical model for parameter identification, it needs to be discretized, as shown 

in Fig. 5(1a). The recursive least squares (RLS) algorithm is widely used for identifying model parameters. 

Its core principle involves continuously refining prior predictions by incorporating newly available data at 

each time step, which allows the algorithm to determine parameter values corresponding to the current 

moment. The new parameter estimate is the sum of the old parameter estimate and the correction term. 

However, traditional least squares methods suffer from a “filter saturation” phenomenon, where, as the 

iteration number increases, the values of the gain K and the covariance matrix P gradually decrease, 

weakening the ability of the algorithm to correct the data and increasing the parameter identification error. 

To address this issue, the forgetting factor recursive least squares (FFRLS) algorithm is introduced. Due to 

its lightweight structure and high computational efficiency, the FFRLS algorithm has been validated and is 

widely integrated into real-world BMS implementations for EVs, supporting reliable and efficient online 

parameter identification [66,67].The forgetting factor is a number between 0 and 1, usually close to 1, which 

serves to diminish the influence of old data and enhance the impact of new data, thereby preventing the 

occurrence of the “filter saturation” phenomenon [54]. As the forgetting factor increases, the parameter 

identification results generally become more stable and robust, but the response speed may decrease. 

Therefore, a balance between identification accuracy and response speed needs to be achieved. After 

multiple rounds of tuning, the forgetting factor is set to 0.98. In this study, the FFRLS method is employed 

for parameter identification of real vehicle battery packs, with the core of the algorithm presented in Equation 

(5). 
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where,   is the forgetting factor, ̂  represents the estimated parameter matrix  , kK represents the gain 

matrix, kP  denotes the covariance matrix, and I  stands for the identity matrix. During algorithm execution, 

as shown in Fig. 5(1b, 1c), the parameters are first initialized, and then Equation (5) is used iteratively. The 

parameters are adjusted based on the error until the identification error reaches an acceptable range. To verify 

the effectiveness of the proposed method, the identification results for two randomly selected data segments 

are illustrated in Fig. 5(2a–2d). Fig. 5(2a, 2c) show that the identification errors are both less than 1%. 

Specifically, in Fig. 5(2a), the estimated load voltage closely matches the actual measured voltage curve, 

indicating that the algorithm provides an accurate estimate of the load voltage during the identification 

process. Furthermore, the identification results in Fig. 5(2c) also exhibit minimal error, further demonstrating 

the high precision and reliability of this method in real vehicle battery pack parameter identification. 

Experimental findings indicate that the FFRLS algorithm effectively mitigates the filter saturation issue and 

demonstrates strong performance in terms of robustness and precision for identifying a complex battery pack 

model. Parameter identification is discussed in more detail in Supplementary Note 4. 

3.2.4 Health features overall analysis 

The three-dimensional feature extraction process extracts 11 relevant health features, as shown in Table 

2, with specific classifications and information. Pearson correlation is applied to examine the feature 

distribution, the linear relationships among features, as well as those between features and labels, as 

illustrated in Fig. 6 [53]. The formula for the Pearson correlation coefficient is provided in Supplementary 

Note 5. The specific values in Fig. 6 represent the Pearson correlation between features and between features 

and labels. As expected, a strong negative correlation exists between battery capacity, cumulative mileage, 

fast charge counts, and internal resistance with SOH. However, the average current, power, and temperature 

during the charging phase show a weak correlation with SOH, respectively. This does not suggest that these 

factors are irrelevant to SOH, but rather reflects the limitation of the Pearson correlation coefficient, which 
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is only capable of identifying linear associations. To explore this aspect further, Section 4 employs SHAP 

analysis for additional validation.  

Additionally, the data distribution of features and labels is shown along the diagonal in Fig. 6 for a more 

intuitive observation of the distribution characteristics of each variable. For example, the red box in the Fig. 

6 shows that the average charging current of users follows an approximately normal distribution, with most 

values concentrated in a moderate range of charging currents. This suggests that the charging behavior of 

most users tends to be stable, with current values that are neither extremely high nor low, which aligns with 

typical charging habits.  

In the lower left part of the Fig. 6, the linear relationships between features and between features and 

labels are further displayed. This section not only helps reveal the basic associations between variables but 

also provides valuable insights for subsequent modeling and analysis. For example, the yellow box in Fig. 6 

clearly shows a significant positive linear correlation between cumulative mileage and internal resistance. 

Specifically, with an increase in cumulative mileage, the internal resistance of the battery pack progressively 

rises. This pattern indicates performance degradation of the battery under prolonged usage. As mileage 

accumulates, the battery experiences more frequent charge and discharge cycles. This leads to less ideal 

internal chemical reactions and a subsequent rise in internal resistance, which negatively influences overall 

battery performance. This finding is consistent with expectations and further proves that battery aging is 

closely related to its service life, particularly evident in the increase in internal resistance. 

Table 1. Overview of the health features. 

Feature dimension Concrete features description Abbreviation 

Shallow dimensional 

features 

Accumulated mileages 
totalM  

Cumulative charge/discharge capacity 
totalC  

Average charging current 
meanC  

Average charging power 
meanP  

Ambient temperature 
aT  

BMS collected battery temperature absolute deviation from 25°C 
offsetT  

Intermediate dimensional 

features 

Fast charge count FCC  

Deep charge-discharge count DCC  

Deep dimensional features Ohmic resistance 
0R  
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Polarization resistance 
DC  

Polarization capacity 
DR  

 
Fig. 6. Pearson correlation analysis results between SOH and the input features. The diagonal displays the 

distribution plots of each feature and the target variable. For example, the red box highlights the distribution of 

average charging current. The lower-left panel contains scatter plots illustrating the linear regression relationships 

between pairs of features and between features and the target. In the yellow box, for instance, the X-axis represents 

accumulated driving mileage and the Y-axis represents ohmic resistance, which together exhibit a positive linear 

correlation. 

3.3 TCN- iTransformer for SOH estimation 

3.3.1 Model development 
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As shown in Fig. 7, to address the challenges faced by real-vehicle SOH estimation, such as long periods, 

multiple features, and data noise, a TCN-iTransformer hybrid deep learning model is proposed. This model 

primarily consists of a TCN and an iTransformer module. First, the TCN module can effectively capture 

long-term dependencies, offering high computational efficiency and parallel processing capability, which 

makes it well-suited for processing battery datasets spanning extended periods [68]. Next, the iTransformer 

module addresses the issue of multi-feature input by mapping time-series data of the same variable into high-

dimensional feature representations via an inverted embedding module, overcoming the information loss and 

computational bottleneck issues that traditional Transformers face when processing multivariate time-series 

data [69]. To address the noise issue in the traditional attention mechanism, a multi-head differential attention 

mechanism is introduced, which reduces attention noise interference by computing the differences between 

attention spectra, thereby enhancing the robustness of the model [70]. Finally, the projection layer integrates 

the extracted features and outputs the final SOH estimation results.  

 

Fig. 7. TCN-specialized iTransformer model architecture diagram. (a) TCN structure diagram, including causal 

convolutions, dilated convolutions, and residual blocks. (b) Inverted embedding schematic diagram. (c) 

Differential attention mechanism schematic diagram. 

3.3.2 Temporal convolution network 
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TCN has been shown to be effective in addressing certain time-series tasks, outperforming traditional 

models such as RNN and LSTM in specific scenarios [68,71]. Especially in real-vehicle SOH estimation, 

when facing challenges like long time spans and large data volumes, TCN can significantly enhance network 

running efficiency through large-scale parallel processing, making it better suited to handle complex 

multivariate time-series data. Moreover, TCN can adaptively adjust the receptive range of the network by 

modifying the dilation rate. As illustrated in Fig. 7(a), the key structural elements of TCN consist of causal 

convolutions, dilated convolutions, and residual connections. The corresponding formula is given in 

Equation (6). 

1

0

( )

k

t d ii

i

wf t x

−

−

=

=                                                            (6) 

where 
tx  is the input time series, ( )f t  is the convolution output, 

iw  is the convolution kernel weight, d  is the 

dilation rate, and k  represents the kernel size. The details of the TCN are provided in Supplementary Note 

6. 

 

3.3.3 iTransformer and multi-head differential attention 

Real-vehicle SOH estimation is a multi-feature time-series problem. However, conventional 

Transformer models do not fully exploit their potential when dealing with multivariate time-series data [69]. 

The iTransformer, as a novel sequence prediction model, is based on the original Transformer encoder 

architecture, as shown in Fig. 7, the architecture comprises an inverted embedding layer, followed by an 

attention module, the normalization component, a feedforward network, and a projection unit, with no 

modifications to the individual Transformer modules. Instead, it performs an inversion-based modeling 

approach on top of the original Transformer. Additionally, iTransformer innovatively adopts an inverted 

perspective during the variable input phase, mapping the entire time series of the same variable into a high-

dimensional feature representation. This approach changes the traditional sequence embedding method, 

where the resulting feature vector is centered around the variable itself, independently showcasing the 

historical process it reflects. This allows the attention mechanism to function more effectively, capturing the 

correlations between variables more efficiently. Subsequently, the feed-forward network and layer 

normalization collaborate to eliminate range discrepancies between different variable measurement units, 

enabling the model to learn sequence features suitable for time-series predictions. Finally, the projection 
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layer integrates the extracted features and outputs the final prediction results of the model. This method 

significantly overcomes the limitations of traditional Transformers in multivariate time-series forecasting 

and has proven to achieve significant breakthroughs in training on six benchmark datasets [69]. 

3.3.3.1 iTransformer 

The mainstream approach of traditional Transformer models is to represent all variables at the same time 

step as “Tokens,” resulting in a time-point-based word sequence. The model mainly focuses on dependencies 

between different time steps, often overlooking interactions between variables. However, in multivariate 

time-series modeling, such as SOH estimation in this study, there are typically complex interrelations 

between features. For example, a certain linear relationship exists between cumulative mileage and internal 

resistance, and a representation based solely on time steps is insufficient for fully modeling these 

dependencies. 

In iTransformer, as shown in Fig. 7(b), the inverted embedding treats the entire time series of each 

variable as an independent input unit, meaning each variable forms its independent embedding token, thereby 

enabling “variable-centered” modeling. For a given time length T  and number of variables N in the 

multivariate time-series T NX  , ,:tX represents all features at the same time step, and :,nX  represents the 

full sequence of a single variable. Since :,nX  is the entire sequence of the same variable, it carries more 

consistent semantics and measurement units than ,:tX . As shown in Equation (7), the inverted embedding 

layer maps :,nX  to a high-dimensional space using a multi-layer perceptron (MLP), resulting in an 

embedding feature matrix  1, , N D
NH h h =   that contains N Variate Tokens, where each D

ih   

contains all the time-series variations of the corresponding variable in the past time steps, referred to as a 

Variate Token. In the subsequent layers, the self-attention mechanism facilitates interaction between each 

Variate Token, while layer normalization standardizes the measurement units and feature distributions of 

different variables. The feed-forward network performs fully connected feature encoding. Finally, the 

projection layer outputs the estimation results for each Variate Token. The entire computational process is 

represented by Equations (7) to (9). 

( )0
:, Embedding n nh X=                                                                   (7) 
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( )1 TrmBlock , 0, , 1l lH H l L+ = =  −                                                      (8) 

( ):, Projection L
n nY h=                                                                    (9) 

where, 
:,nY  represents the final prediction result of :,nX . Both the embedding layer and the projection layer 

are implemented using an MLP. The TrmBlock includes the self-attention mechanism, layer normalization, 

and feed-forward neural network. 

3.3.3.2 Multi-head differential attention 

The attention mechanism is designed to mimic how the human brain selectively focuses on different stimuli 

based on their relevance. This concept has been extensively applied in natural language processing. In its 

conventional form, attention computes the dot product between the query (Q), key (K), and value (V), 

followed by softmax weighting to perform global feature integration [68]. However, traditional attention 

mechanisms often face challenges in accurately retrieving key information from the context, especially when 

handling complex or noisy data, as irrelevant information can interfere with the retrieval process. To address 

this issue, the differential attention mechanism is introduced. The core idea is to effectively eliminate noise 

interference by computing the difference between two independent attention spectra. This design is inspired 

by the differential amplifier principle in electrical engineering, which removes common-mode noise by 

comparing the differences between two signals [70]. In this way, the differential attention mechanism can 

suppress irrelevant noise from different sources while preserving important information, thereby improving 

the ability of the model to extract key information. Similar to traditional attention mechanisms, the Q, K, 

and V vectors in differential attention are obtained by performing linear transformations on the input 

sequence X. Attention scores are then computed by comparing the query and key vectors, followed by a 

weighted sum of the value vectors. The key innovation lies in utilizing a pair of softmax functions to filter 

out noise from the attention scores. The specific formulas are shown in Equations (10) and (11). 

   1 2 1 2; , ; ,Q K VQ Q XW K K XW V XW= = =                                      (10) 

1 1 2 2DiffAtnn( ) softmax softmax
T TQ K Q K

X V
d d


    

= −        
    

                               (11) 

where model N d
X


  is the input sequence, N is the length of the input sequence, dmodel is the input feature 

dimension, and , ,Q KW W model 2d dVW


  are the projection matrix. The query, key, and value vectors are 
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represented by 2
1 2 1 2, , , ,N d N dQ Q K K V   , respectively. A learnable scaling factor  is used to control 

the weighted difference between the two attention spectra, as shown in Equation (12) 

( ) ( )
1 1 2 init exp exp     =  −  +

2q k q k                                        (12) 

where, 
1 1 2 2
, , , d    q k q k

 are learnable vectors used to adjust the attention weights, and
init (0,1)   is a 

constant initialization parameter, typically set to 
init 0.8 0.6 exp( 0.3 ( 1))l = −  −  − , where [1, ]l L  

represents the layer index, and L is the total number of layers [70]. 

3.3.4 Model loss function and normalization 

The performance of the hybrid model is enhanced by utilizing the mean squared error (MSE) loss 

function. This function calculates the average squared deviation between the estimated and actual SOH 

values. In this study, min-max normalization is applied to preprocess all input features before training. The 

formulas for MSE and min-max normalization are provided in Supplementary Notes 7 and 8, respectively. 

4. Results and discussion 

In this study, to validate the proposed TCN-Specialized iTransformer model based on multi-

dimensional health features, practical generalization tests and model robustness under data scarcity 

conditions are conducted. Finally, SHAP analysis is performed on the multi-dimensional feature system of 

the model using the trained model. Notably, most previous real-vehicle SOH models were typically validated 

within the same battery material or vehicle type. However, this study encompasses a wide range of vehicle 

types and battery materials, thereby broadening the range of model application and enhancing generalization 

capability. 

4.1 Model hyperparameters  

The effectiveness of deep learning models is closely related to the selection of hyperparameters, which 

influence both the training dynamics and architectural configuration [46]. In the case of the TCN module, 

the dilation rate determines the receptive field size of the convolution kernel, which in turn impacts the 

capacity of the model to handle long time-span data. Appropriately setting the dilation rate enables the model 

to learn long-range temporal dependencies without increasing the depth of the network. This is especially 

important for tasks like SOH estimation, particularly when handling long time-series data. A larger dilation 

rate enables the model to obtain more extensive historical information, thereby providing a more accurate 
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reflection of changes in battery health status over time. Additionally, the length of the sliding window 

determines the time span that the model can capture. A longer window helps to identify long-term 

dependencies but may increase computational load, while a shorter window focuses more on local features 

and is computationally more efficient. In this work, several critical hyperparameters were optimized through 

a grid search strategy. For example, as shown in Fig. 8, the x-axis represents batch size, increasing by a step 

size of 16, and the y-axis represents the sliding window size, increasing by a step size of 5. For the purpose 

of hyperparameter tuning, vehicle # 4 was randomly selected, and the feature and label data were split into 

training and test sets in an 8:2 ratio, with the first 80% used for training and the remaining 20% for testing. 

After training the model, the relative error of the test set is statistically analyzed. The figure shows that the 

relative error does not follow a simple linear relationship with batch size and window size. For example, 

when the batch size is 16, the average relative error of the test set first decreases, then increases, and 

decreases again as the window size increases. After analysis, this study selected a batch size of 32 and a 

window size of 30. The main hyperparameters of the model are shown in Table 3. 
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Fig. 8. Relative error distribution and mean value of the test set under different batch sizes and window sizes. i 

represents the batch size, and j represents the window size. Taking vehicle #4 as an example, its data is split in an 

8:2 ratio, and training is performed with different batch sizes and window sizes. 

Table 3. Model hyperparameters. 

Hyperparameters Value Hyperparameters Value 

Seed 42 TCN kernel size 3 

Window size 30 TCN stride 1 

Model dimension 64 TCN dilation rate (Layer 1, 2, 3) 1, 2, 4 

Window size 1 TCN dropout rate 0.2 

Batch size 32 Causal padding for TCN (Layer 1, 2, 3) 1, 2, 4 

Optimizer Adam Number of TCN layers 2 

Number of epochs 400 Number of encoder layers 2 

The number of attention heads 4 Initial value of the differential attention 

mechanism scaling factor 
0.8 

Encoder dropout rate 0.1 Embedding mapping dimension 64 

TCN dropout rate 0.2 TCN activation function ReLU 

Number of encoder layers 2 Encoder activation function GELU 

Feedforward network dimension 32 Learning rate 0.001 

 

4.2 Model generalizability validation 

In this study, during the model generalization test, 20%–30% randomly selected vehicles are used as 

the test set to demonstrate the accuracy of the model [44]. The results are compared with three other 

mainstream models: Transformer, CNN, and LSTM. To ensure reproducibility and fairness, the training 

processes for all four models are set with the same learning rate strategy. Fig. 9(a, b) illustrate the differences 

between estimated SOH and actual values across various test datasets. In Fig. 9(a), the test set includes two 

passenger vehicles, #3 and #5. While in Fig. 9(b), the test set is expanded to include the commercial vehicle 

#10 in addition to #3 and #5. These two test sets cover different vehicle types and battery materials, but the 

proposed SOH estimation method achieved the best estimation accuracy on both test sets.  

To further quantify and evaluate the performance, this study compared the four methods across five key 

dimensions: R2, MAE, MAPE, RMSE, and maximum error (ME). The formulas for these metrics are 

provided in Supplementary Note 7. Fig. 9(c, d) show that the method proposed in this study achieves a 

maximum error of less than 2% in both the first and second test sets. Additionally, the proposed method 

outperforms the other three methods in the remaining four evaluation metrics. In contrast, the other three 

methods exhibit varying strengths and weaknesses across different dimensions; LSTM demonstrates 

relatively better performance in terms of average R2, ME, and RMSE across the two test sets. Compared to 

LSTM, the proposed method achieves substantial improvements, including reductions of 83.8% in MAE, 

83.7% in MAPE, 81.4% in RMSE, and 47.6% in ME, along with a 30.6% increase in R2. Overall, the 
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proposed method demonstrates the ability to achieve accurate estimates across different test sets. The 

additional cross-vehicle validation is discussed in Supplementary Note 9. 

 

Fig. 9. SOH estimation results compared with different test sets and algorithms. (a) SOH estimation results on the 

test set consisting of vehicles #3 and #5, with the remaining vehicles used for training, under different algorithms. 

(b) SOH estimation results on the test set consisting of vehicles #3, #5, and #10, with the remaining vehicles used 

for training, under different algorithms. (c) Comparison of estimation error metrics for various algorithms from 

panel (a). (d) Comparison of estimation error metrics for various algorithms from panel (b). 

4.3 Model robustness under data scarcity conditions 

To evaluate the data efficiency and practical applicability of the proposed framework in large-scale 

realistic EV fleet deployment scenarios, this section examines the performance of the model under data 

scarcity conditions. In practical applications, particularly on cloud-based platforms that manage large EV 

fleets, it is often impractical to collect extensive historical data for each newly connected vehicle. Therefore, 
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an SOH estimation model must be capable of achieving reliable fitting performance with limited training 

data, thereby reducing data acquisition efforts, training time, and computational costs. 

In this study, vehicles #1, #5, and #8 are randomly selected as case studies. For each vehicle, two 

training configurations are evaluated, using 80% and 30% of the available data, respectively. The remaining 

data serve as the test set to assess model performance. As illustrated in Fig. 10, the proposed method 

consistently achieves superior results across all test cases under both training conditions, outperforming 

baseline models such as Transformer, CNN, and LSTM. Even when trained with only 30% of the data, the 

proposed model maintains stable fitting accuracy across different vehicle types and battery chemistries. As 

shown in Table 4, the proposed method achieves the lowest RMSE across all configurations, with a maximum 

RMSE below 0.16%. In contrast, some baseline models may occasionally achieve lower errors on certain 

individual test cases, their performance generally fluctuates significantly across different vehicles and 

training conditions, indicating weaker robustness and generalization. In contrast, the proposed method 

delivers consistent and reliable performance across diverse practical operating scenarios. In summary, the 

proposed method establishes stable SOH estimation mappings under data scarcity conditions. It provides a 

practical and scalable solution for intelligent battery health management in on-road EV deployment. 

Table 4. The RMSE of the test sets under different training data proportions and across different vehicles. 

Training set ratio Vehicle number Proposed method CNN Transformer LSTM 

80% #1 0.08‰ 0.65‰ 0.59‰ 0.84‰ 

#5 0.42‰ 4.10‰ 2.99‰ 2.57‰ 

#8 1.06‰ 2.86‰ 3.79‰ 4.15‰ 

30% #1 0.51‰ 3.83‰ 2.66‰ 3.88‰ 

#5 1.43‰ 9.00‰ 12.61‰ 12.19‰ 

#8 1.55‰ 5.61‰ 7.87‰ 4.58‰ 

4.4 Model interpretability based on SHAP 

Due to the intricate internal mechanisms and high nonlinearity of deep learning models, they are often 

regarded as “black boxes.” Although such models are capable of autonomously extracting meaningful 

features from large-scale data, their internal structures and the knowledge they acquire are often difficult for 

humans to comprehend. This complexity reduces model transparency and poses challenges in interpreting 

the reasoning behind estimation results, thereby affecting the reliability and interpretability of the model 

outputs. To address this issue, this study introduces SHAP-based analysis to explore how various features 

influence the results of the model, with a particular focus on the proposed shallow, intermediate, and deep 

three-dimensional feature structures. SHAP, rooted in Shapley values from cooperative game theory, 

Acc
ep

te
d M

an
us

cri
pt



 

29 

quantifies the contribution of each input feature by computing its marginal effect on the prediction through 

an aggregation over all possible feature subsets [53]. The mathematical formulation is 
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Fig. 10. Comparison of different algorithms under data scarcity conditions. (a–c) Comparison of models on 

vehicles #1, #5, and #8 with 80% training and 20% testing data. The right side shows violin plots of relative 

estimation errors for different algorithms. (d–f) Comparison of models on vehicles #1, #5, and #8 with 30% 

training and 70% testing data, with corresponding violin plots of relative estimation errors. 

\{ }

| | !(| | | | 1)!
( ( { }) ( ))

| | !
r S Z r

S Z S
f S r f S

Z
 

− −
=  −                                    (13) 

where, Z  is the complete feature set in the study, S represents the subset of features excluding feature r , f

is the model function. The expression ( ( { }) ( ))f S r f S −  reflects the impact of adding feature r to subset S.  

 

This study conducts a global explanation of the importance of the three-dimensional feature system 

using SHAP analysis. Global explanation refers to an analysis of the entire model, aiming to help us 

understand the importance of each feature and how they influence the estimation results of the model. As 

shown in Fig. 11, the global significance of each feature in the proposed model is displayed, and the average 

contribution of each feature is described. Among the 11 features, the contributions of the first seven features 

reached 99%. Specifically, the first-dimensional feature contributed 20.6%, the second-dimensional feature 

contributed 43.5%, and the third-dimensional feature contributed 35.9%. The dimensional contribution 

analysis shows that although the second-dimensional feature contains only two features, its contribution 

exceeds that of the other two dimensions.  

 

Fig. 11. Global feature contribution analysis of the proposed model based on SHAP. (a) Average SHAP value 

analysis and heatmap display of feature contributions. (b) Total contribution proportion of different dimension 

features. 

Based on the previous analysis, the second-dimensional features primarily stem from the driving 

behaviors, which indicates that, in real-vehicle SOH estimation, the heterogeneity of drivers significantly 

impacts SOH degradation. Therefore, feature extraction from the perspective of the user is particularly 
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important in on-road SOH estimation modeling. Additionally, although the third-dimensional feature 

includes only three features, its contribution remains as high as 35.9%. Notably, the average power, which 

shows a low Pearson correlation in Fig. 6, contributes as much as 10.1%. This suggests that a low linear 

correlation between a feature and the label does not imply that the feature has no contribution to the model. 

Furthermore, for features such as cumulative charge-discharge capacity, which exhibit high linear correlation 

with SOH, the corresponding global contribution appears relatively lower. This may be attributed to strong 

collinearity between cumulative charge-discharge capacity and cumulative mileage. As these two features 

contain partially redundant information, the model integrates such redundancy during training, which dilutes 

the marginal contribution of any single feature in the global attribution analysis [72]. In summary, features 

from each dimension make significant contributions to the estimation results of the model. The absence of 

any dimension would compromise the estimation result, further validating the importance of the three-

dimensional feature system proposed in this study. 

4.5 Comparison of model performance after feature optimization 

As indicated by the analysis above, there are four features with a contribution of only 1%. Thus, this 

study excluded them from the dataset and retrained the proposed model using the first dataset from Section 

4.2, followed by a comparison, shown in Table 5. The performance of the model before and after removing 

the features was evaluated using R2, RMSE, MAE and MAPE. After removing these four features, the most 

significant improvement was in training efficiency, with a 17.3% reduction in training time. Additionally, 

R2 increased, while RMSE, MAE and MAPE decreased. This improvement in performance is primarily due 

to the elimination of irrelevant features, which reduces the susceptibility of the model to noise and enables 

it to focus more on informative variables. Additionally, Supplementary Note 10 provides a comparison of 

different algorithms, including CNN, LSTM, and Transformer, after feature optimization. 

Table 5. Performance metrics before and after feature optimization based on SHAP importance. 

Evaluation metric Before optimization After optimization Improvement  

Training time (s) 120.75 99.79 17.3% 

R2 (%) 98.67 98.71 0.04% 

RMSE (%) 0.4598 0.4521 1.67% 

MAE (%) 0.3633 0.3483 4.13% 

MAPE (%) 0.4056 0.3887 4.17% 

By utilizing SHAP-based interpretation, the model can identify and remove features with limited 

contribution, thereby improving accuracy. It is essential to note that, in certain specific cases, even these 

weak features may have contributed to the estimation result of the model, potentially reducing the estimation 

Acc
ep

te
d M

an
us

cri
pt



 

32 

error. However, these features could negatively impact the overall performance of the model. Based on the 

above analysis and optimization, the final three-dimensional feature system established in this study is 

presented in Table 6. 

Table 2. Health features after optimization. 

Feature dimension Concrete features description Abbreviation 

Shallow dimensional features 
Accumulated mileages 

totalM  

Average charging power 
meanP  

Intermediate dimensional features 
Fast charge count FCC  

Deep charge-discharge count DCC  

Deep dimensional features 

Ohmic resistance 
0R  

Polarization resistance 
DR  

Polarization capacity 
DC  

4.6 Discussion  

In practical EV deployments, SOH estimation faces ongoing challenges due to inconsistencies in driver 

operation, variations in environmental conditions, and the diversity of battery chemistries within vehicle 

fleets. Unlike laboratory datasets, operational data collected during on-road use are often affected by noise, 

making it difficult to extract degradation signals reliably. The framework proposed in this study is designed 

to address these challenges. Its hybrid architecture enables the model to process incomplete temporal 

sequences and extract meaningful degradation features from data that deviate from idealized charge-

discharge patterns. Moreover, the three-dimensional health feature system, developed for vehicle-based 

applications, integrates physical, behavioral, and electrochemical information, thereby enhancing the model 

capability to capture degradation heterogeneity. Importantly, the framework is designed for cloud-based 

deployment, allowing raw vehicle data to be periodically transmitted, preprocessed into standardized feature 

representations, and used to produce SOH estimates across all connected vehicles through centralized model 

training. This architecture supports unified training and analysis, reduces the computational burden on 

onboard hardware, and enables real-time monitoring across vehicle fleets. 

Furthermore, reliable SOH estimation is of critical importance for the life cycle management of EV 

batteries. In the retirement phase, accurate SOH values can be used to identify performance thresholds and 

inform rational end-of-life strategies. In second-life applications, the safety and durability of the battery 

system depend on a balanced configuration of cells. SOH-based reuse strategies can optimize cell allocation 

and reduce the risk of failure due to mismatch. Similarly, in the recycling phase, state classification based 

on historical health data can improve material recovery efficiency and reduce processing costs. The 
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compatibility of the proposed framework with cloud deployment further enables integration into residual 

value assessment workflows for used EVs, where battery condition plays a key role in determining market 

value. Despite these advantages, future work must address challenges arising from domain shift and varying 

operational conditions, potentially through online adaptation or continual learning. Such advancements are 

essential to ensuring that SOH estimation remains reliable not only during active service but also throughout 

the reuse, resale, and retirement stages, thereby enabling intelligent life-cycle management of EV battery 

systems. 

5. Conclusions 

Reliable estimation of battery capacity degradation is essential for enabling timely maintenance, 

accurate residual value assessment, and effective second-life applications in EVs. To address this challenge, 

this study proposes a hybrid deep learning framework—TCN-Specialized iTransformer—built upon a three-

layer dimensional feature system using real-vehicle data. To enhance the generalizability and practical 

applicability of the model, the dataset includes operational data from typical commercial and passenger EVs 

and covers two mainstream battery chemistries: NCM and LFP. This ensures broad representativeness in 

terms of battery types and usage scenarios. Based on this dataset, a three-dimensional feature system—

comprising shallow, intermediate, and deep features—is constructed from raw vehicle sensor data, driver 

behavior patterns, and internal electrochemical parameters. To handle the long time spans and high volume 

of multivariate time-series data inherent in on-road applications, the TCN enables efficient parallel 

processing and captures temporal dependencies effectively. Additionally, to address the limitations of 

traditional Transformers in multivariate time-series modeling, the study introduces a Specialized 

iTransformer module, featuring a differential attention mechanism that mitigates noise in standard attention 

layers and improves robustness. 

Both generalization and data scarcity robustness tests were conducted to evaluate the performance of 

the proposed SOH estimation method. In the generalization test, the model was validated across different 

vehicle types and battery chemistries using two distinct test sets. The results demonstrated strong estimation 

performance, with average values of R2 = 98.88%, MAE = 0.31%, MAPE = 0.35%, RMSE = 0.40%, and 

ME = 1.85%. To enable a comprehensive performance assessment, the proposed method was benchmarked 
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against several widely adopted deep learning models, including Transformer, CNN, and LSTMs. Compared 

to the best-performing baseline, the proposed method achieves relative reductions of 83.8% in MAE, 83.7% 

in MAPE, 81.4% in RMSE, and 47.6% in ME, along with a 30.6% increase in R2. To assess model robustness 

under data scarcity, the training data was truncated at 80% and 30% of the time series. Even with significantly 

reduced training data, the model maintained high accuracy, with RMSE values not exceeding 0.16%, again 

surpassing baseline methods. Model interpretability and feature relevance were further evaluated through 

SHAP analysis. Results revealed that all three feature dimensions contributed meaningfully to the estimation 

results of the model. Notably, two features related to driver behavior—part of the intermediate feature 

dimension—accounted for as much as 43.5% of the total contribution, highlighting the significant influence 

of driving behavior on battery degradation. Based on this insight, the feature set was optimized by removing 

four less impactful features, resulting in a 17.3% reduction in training time and improvements of over 4% in 

both MAE and MAPE. In conclusion, the proposed approach enables accurate, interpretable SOH estimation 

in practical vehicle settings. It supports proactive maintenance and life cycle management of EV battery 

systems and provides a scalable foundation for future deployment in cloud-based battery health monitoring 

platforms. 

In future work, preliminary discussions have been conducted with Guangzhou Automobile Group Co., 

Ltd. regarding data sharing and model application. The proposed method is expected to be extended to a 

large-scale dataset encompassing millions of vehicles from the company, in order to further validate its 

generalization capability through cloud-based deployment. By integrating multimodal data from diverse 

onboard sensors, the model is expected to achieve greater adaptability and robustness across a wider range 

of on-road scenarios. Additionally, the model will be deployed on mainstream EV cloud platforms, with 

periodic online updates and retraining mechanisms to enable real-time battery monitoring and proactive 

maintenance. This integration will facilitate comprehensive lifecycle management and enhance the 

operational performance of EVs. Ultimately, the proposed framework is anticipated to accelerate the 

intelligent evolution of battery management systems and support the sustainable development of the EV 

industry. 
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