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A B S T R A C T

This study employs data-scraping and analysis of 11,525 Plug-in Electric Vehicle (PEV) user re
views from 2018 to 2024, focusing on users’ battery performance satisfaction with electric range, 
battery degradation, and charging experience. Using SnowNLP, Multinomial Naive Bayes, and 
Bidirectional Encoder Representations from Transformers (BERT), along with an explainable 
machine learning algorithm, the findings identify location and vehicle price as critical factors 
influencing PEV perceptions. Battery Electric Vehicles (BEVs) receive consistently more positive 
feedback than Plug-in Hybrid Electric Vehicles (PHEVs) across the Chinese Mainland, though 
satisfaction for both declines with vehicle age. PEVs with an all-electric range of under 100 km get 
predominantly negative reviews after over four years of use. To boost PEV adoption and satis
faction, targeted incentives for PHEVs with 150–200 km and BEVs with 550–600 km range in 
lower-tier cities are recommended. These findings offer valuable insights for manufacturers and 
policymakers promoting PEV market growth in China.

1. Introduction

Plug-in Electric Vehicles (PEVs) represent the main direction for the transformation of the global vehicle industry, and constitute an 
important strategic choice for the high-quality development of China’s automotive industry (Xin, 2024). Nowadays, China’s road 
transport energy transition has fundamentally established a PEV development strategy that prioritizes Battery Electric Vehicles (BEVs) 
while concurrently developing Plug-in Hybrid Electric Vehicles (PHEVs) and Fuel Cell Vehicles (FCVs) (Wei et al., 2022). According to 
the latest data released by the Ministry of Industry and Information Technology of the People’s Republic of China (Ding et al., 2024), in 
2023, the new vehicle sales penetration rate of PEVs in China reached 31.6 %, with production and sales volumes jumping to 9.587 
million and 9.495 million, respectively, maintaining a global lead for the ninth consecutive year.

As PEVs continue penetrating the market, user-centric design becomes increasingly critical in determining their success and 
acceptance (Li et al., 2024). Before the 2020 s, during the initial implementation phase of PEV incentive policies worldwide, PEVs had 
not yet achieved widespread market penetration (Ou et al., 2018). At that time, research in this field primarily focused on studying 
public acceptance of PEVs and analyzing the factors influencing public adoption rates through hypothetical scenarios. Existing studies 
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indicated overarching issues such as cost (Egbue & Long, 2012; Larson et al., 2014; Skippon & Garwood, 2011; Graham-Rowe et al., 
2012; Yang et al., 2018), driving range (Egbue & Long, 2012; Larson et al., 2014; Skippon & Garwood, 2011; Yang et al., 2018), 
charging convenience (Larson et al., 2014; Skippon & Garwood, 2011; Yang et al., 2018), vehicle characteristics (Larson et al., 2014; 
Skippon & Garwood, 2011; Graham-Rowe et al., 2012), and consumer individual attributes (Egbue & Long, 2012; Haustein & Jensen, 
2018) are crucial for broader PEV adoption. For example, an online survey of technology enthusiasts in the US emphasized that, 
besides individual attributes, electric range and cost emerged as critical drivers of PEV adoption (Egbue & Long, 2012). The attitudes of 
Canadian residents toward electric vehicles were predominantly influenced by total cost, vehicle characteristics, and charging con
venience (Larson et al., 2014). In the UK, while attributes associated with BEVs, such as acceleration, smoothness, and reduced noise, 
were generally viewed positively, purchase costs, driving range, and charging time are identified as the three main negative factors 
(Skippon & Garwood, 2011). However, although Denmark and Sweden had relatively high nationwide coverage of public charging 
stations (540 charging locations, including 235 fast-charging stations; 19/9/2017), the share of BEVs in new vehicle purchases was 
only 0.5 % in 2016. Instead, it was the individual attributes of potential consumers that had a greater influence on BEV adoption 
(Haustein & Jensen, 2018). According to Graham-Rowe et al. (2012), PEVs were evaluated against Internal Combustion Engine (ICE) 
vehicle benchmarks concerning cost, performance, convenience, comfort, and aesthetics, with purchase intentions largely dependent 
on PEVs meeting these criteria in the future. Similarly, a study of the Chinese market using the Stated Preferences (SP) survey method 
found that factors such as the coverage of charging piles, driving range, charging speed, and price influence the potential ownership 
and usage of PEVs (Yang et al., 2018). However, since PEVs are direct “end-user products”, it might be impractical to predict user 
reactions based solely on pre-experience (a priori) data (Daramy-Williams et al., 2019). Furthermore, providing opportunities for 
consumers to gain hands-on experience with PEVs can potentially alter their attitudes toward these vehicles (Jena, 2020). Therefore, 
assessing firsthand evidence from users after they have experienced PEVs (a posteriori) becomes necessary (Daramy-Williams et al., 
2019).

Through a field study of actual PEV users, research across different regions highlighted that electric range (Franke and Krems, 2013; 
Kwon et al., 2020; Su et al., 2020), charging convenience (Kwon & Jang., 2020; Su et al., 2020; Jin et al., 2021), vehicle performance 
(Zhao et al., 2023; Su et al., 2020; Jin et al., 2021), cost (Su et al., 2020; Zhao et al., 2023), noise (Zhao et al., 2023), and delivery time 
(Zhao et al., 2023) were key factors typically influencing user satisfaction with PEVs. Specially, in a large-scale electric vehicle trial in 
the Berlin metropolitan area, Germany, 79 participants were examined by Franke & Krems. (2013). They found that higher electric 
range demand, familiarity with conventional vehicles, and greater electric range anxiety experience positively influenced satisfaction 
with electric range. In South Korea, it was found through interviews with PEV users that two factors closely related to PEV usabili
ty—driving range and charging—significantly impact overall user satisfaction. While most BEV users were currently dissatisfied with 
the driving range and charging conditions, satisfaction with these factors was expected to improve as technology advances (Kwon & 
Jang, 2020). In the Analytic Hierarchy Process (AHP) analysis, it was found that Korean Micro Electric Vehicle (MEV) users ranked 
factors in order of importance as follows: user utilization, vehicle movement, and charging services (Jin et al., 2021). In China, field 
studies conducted in Shanghai and Nanjing revealed that user experiences related to usefulness, experience of ease-of-use, total cost, 
electric range, and charging infrastructure readiness were key factors influencing the satisfaction of PEV users (Su et al., 2020). An 
online survey was conducted to assess user satisfaction and improvement priorities, revealing that both full-sized and mini electric 
vehicles urgently needed improvements in noise isolation and driving range. Additionally, enhancements in delivery time, charging 
queue time, and purchase price were required for full-sized EVs, while mini EVs needed improvements in safety, comfort, and purchase 
subsidies (Zhao et al., 2023).

Recently, digital footprints such as online PEVs’ user reviews and ratings have become valuable resources for understanding 
consumer sentiments and expectations (Li & Chen., 2022; Bian et al., 2024). Beyond merely capturing consumer emotions, the analysis 
of online reviews plays a dual role in shaping consumer attitudes toward PEVs and potentially influencing potential buyers (Maslowska 
et al., 2017). Currently, Natural Language Processing (NLP) and Machine Learning (ML) techniques are employed on these large 
datasets to quantify consumer satisfaction, expectations, and concerns. For instance, research on global public sentiment towards PEVs 
on YouTube indicated that positive emotions were often driven by the environmental benefits of PEVs, technological innovations, and 
the potential for long-term cost savings. Conversely, negative emotions were primarily focused on the high initial cost of PEVs, anxiety 
about battery life and range, and the inadequacy of charging infrastructure (Costello & Lee, 2020). Furthermore, in the US, Con
volutional Neural Network (CNN) models were employed to analyze user sentiment in charging station reviews, examining correla
tions between emotions and station types (public vs. private, urban vs. rural) as well as nearby points of interest (Asensio et al., 2020). 
Using the same approach, consumer comments on PEVs from an Indian social media platform were analyzed, revealing widespread 
concerns about price, maintenance, and safety; CNNs were demonstrated as the most effective model for analyzing PEV sentiment 
(Jena, 2020). In China, SnowNLP and semantic network models were applied to sentiment analysis and opinion mining of Autohome’s 
online comments on Extended Range Electric Vehicles (EREVs), BEVs, and PHEVs, identifying space, energy consumption, and interior 
layout as the most direct factors influencing user sentiment (Li & Chen., 2022). Using “new energy vehicles” as a keyword, continuous 
Weibo posts spanning three months were collected and analyzed to assess public sentiment toward PEVs using the NLPIR-Parser 
platform. Sentiment tendencies were identified, and high-frequency keywords (e.g., safety, accident, battery life, driving range, and 
recharging) extracted from the comments were employed to interpret the specific reasons behind the public’s diverse emotions toward 
new energy vehicles (Wu et al., 2023).

Although field surveys offer a more targeted approach to formulating research questions, they require specialized designs and 
significant time, effort, and financial resources to execute (Fowler, 2013; Nardi, 2018). In response, this study proposed a method
ological framework that significantly minimizes costs by utilizing automated scripts for a sustainable approach that continuously 
updates with the latest reviews in real time (Baviskar et al., 2021). By integrating NLP with manual evaluation, our approach achieves 

L. Shi et al.                                                                                                                                                                                                              Transportation Research Part D 141 (2025) 104644 

2 



Table 1 
Summary of recent studies on PEV users’ reviews.

Study areas 
(Chronological order)

Methodology Disadvantages of 
methodology1

Key determinants in findings2 Study subjects
Electric 
range

Charging 
convenience

Cost Vehicle 
characteristics

Consumer 
individual 
attributes

Others

UK (Skippon & Garwood, 
2011)

Offline survey ①③④⑤⑥ ● ● ● ● ​ Noise PEV adoption & 
PEV satisfaction

US (Egbue & Long, 2012) Online survey ①②⑤⑥ ● ​ ● ​ ● ​ PEV adoption
UK (Graham-Rowe et al., 

2012)
Offline survey ①③⑤⑥ ​ ​ ● ● ● ​ PEV adoption

Germany (Franke & 
Krems, 2013)

Offline survey ①③④⑤ ● ​ ​ ● ● ​ PEV electric 
range satisfaction

Canada (Larson et al., 
2014)

Offline survey ①②③④⑤ ● ● ● ● ​ ​ PEV adoption

Denmark and Sweden (
Haustein & Jensen, 
2018)

Online survey ④⑥ ​ ​ ​ ​ ● ​ PEV adoption

China (Yang et al., 2018) Offline survey ③④⑤⑥ ● ● ● ​ ​ ​ PEV adoption
China (Su et al., 2020) Online survey ④⑤⑥ ● ● ● ● ● ​ PEV satisfaction
South Korea (Kwon & 

Jang, 2020)
Offline survey ②③④⑤⑥ ● ● ​ ​ ● ​ PEV satisfaction

Global (Costello & Lee, 
2020)

YouTube platform reviews +
SentimentR

④⑥⑦ ​ ​ ​ ​ ​ ​ PEV satisfaction

US (Asensio et al., 2020) Mobile applications’ reviews 
+ CNN

④⑥ ​ ● ​ ​ ​ Area and POI (Point of 
Interest)

PEV charging 
satisfaction

India (Jena, 2020) Social media platform 
reviews + CNN

④⑥ ​ ​ ● ● ​ ​ PEV satisfaction

South Korea (Jin et al., 
2021)

Offline survey ①②③④⑤⑥ ​ ● ● ● ● ​ MEV satisfaction

China (Li & Chen., 2022) Autohome website reviews +
SnowNLP

⑥⑦ ​ ​ ​ ● ​ ​ PEV satisfaction

China (Zhao et al., 2023) Online survey ⑤ ● ● ● ● ​ Noise and delivery time PEV satisfaction
China (Wu et al., 2023) Sina Weibo web page review 

+ NLPIR-Parser
①④⑥⑦ ● ● ​ ● ​ Accident PEV satisfaction

China (Bian et al., 2024) Autohome and PCauto website 
reviews + perceived quality 
measure

①④⑥⑦ ​ ​ ​ ​ ​ Emotional experience, 
defect perception, and 
brand/product image

PEV adoption

1 Each number in the “Disadvantages of methodology” column repres ents specific limitations noted in these studies: ①Samples did not consist of PEV users, lacking long-term use and charging 
experience. ②Samples were limited to a specific type of population and did not represent a broad demographic. ③Surveys were time-consuming and required significant human and financial resources. 
④Only one type of PEV was considered, or PEVs were not differentiated by type. ⑤The small sample size resulted in weak robustness of the results. ⑥No quantitative analysis was conducted on key 
determinants. ⑦Relied on a single NLP algorithm, the accuracy of sentiment classification was not evaluated (only applies to studies that analyzed user reviews).

2 In the “Key determinants in findings” column, ● represents that the study found the corresponding factor to be a significant determinant of PEV adoption or satisfaction.
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results comparable to those of more labor-intensive methods (Li & Chen., 2022). This is particularly crucial in the era of big data and 
the increasing prevalence of online reviews, which offer a rich source of untapped data capable of providing more detailed insights into 
consumer sentiment and market dynamics (Maslowska et al., 2017; Costello & Lee, 2020).

Fig. 1. Study workflow and framework.
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Through a comprehensive review of related literature (Table 1), several critical gaps and the necessity for further research were 
identified. (1) Insufficient focus on PEV battery preferences in China: The Chinese Mainland holds a leading position in the global 
PEV market (Graham et al., 2021), underscores the critical need for targeted research on PEV consumer behavior within this key 
market. The substantial influence of government policies and the dominant position of domestic electric vehicle manufacturers 
significantly shape the decision-making processes of PEV consumers in China (Ehsan et al., 2024). Despite existing studies, there 
remains a compelling need for deeper, more nuanced insights into the preferences and behaviors of Chinese PEV consumers, 
particularly in terms of battery performance preferences. (2) Neglect of geographic and temporal factors: Few studies account for 
geographic factors that could offer deeper insights into market segmentation and consumer diversity. Additionally, there is a lack of 
tracking changes in PEV consumer attitudes over vehicle age as the market and technology progress. (3) Need for advanced and 
comparative analytical tools: Current studies focusing on PEV users’ online comments predominantly utilize single NLP algorithms 
for sentiment analysis. This extreme reliance on only one NLP method may lead to misclassifications of sentiments, which fails to 
accurately capture the subtle nuances of PEV users’ emotions. Furthermore, despite the availability of established frameworks for 
collecting and rating online consumer reviews of PEVs, there is still a need to develop more sophisticated analytical tools. Advanced 
big data analytics techniques, such as explainable machine learning (XAI), are crucial for deciphering the nuances in user feedback 
(Rong et al., 2023) and understanding their impact on the PEV market. XAI excels at managing the complex and non-linear re
lationships inherent in consumer data (Li et al., 2024), thereby enabling a more accurate and comprehensive analysis of sentiments and 
behavioral patterns that are often incorrectly assumed to be linear by conventional analyses.

Focusing on the Chinese market, this study analyzed textual data from user comments using NLP algorithms to quantify PEV user 
sentiments in battery performance. In addition, it integrated corresponding vehicle information and powertrain specifications. This 
study also utilized XAI to gain deeper insights into the key features that drive consumer perceptions in the PEV sector. Through big data 
mining and analytics, this study examined preferences both geographically and temporally. Furthermore, it provided a detailed un
derstanding of the interplay between user experience and market dynamics, revealing how these interactions are influenced by broader 
societal, economic, and technological trends. These insights are able to guide strategic policymaking decisions and PEV product 
development.

This paper is organized as follows: Section 2 describes the study methods, including the data sources, study subject, scoring rules, 
the XAI model’s algorithm, and the criteria for analyzing user evaluation indices across different cities. Section 3 presents the results, 
providing a macro-level analysis of the contributions of various important features to the model for PHEVs and BEVs, respectively. At 
the micro level, it primarily examines the specific impacts of geographical factors, price, vehicle age, and model year on user eval
uations. This section also compares these findings with existing literature to underscore the contributions of this study. Finally, Section 
4 and Section 5 conclude by summarizing the main findings and suggesting avenues for future research.

2. Data & methods

The comprehensive workflow and framework employed in this study to systematically analyze PEV users’ battery performance 
satisfaction is illustrated in Fig. 1. This framework is organized into five key steps: data collection, comment categorization, sentiment 
scoring, key factor identification, and quantitative analysis. The key issues addressed at each step are highlighted in red text within the 
Fig. 1.

2.1. Data source

The dataset for this study was sourced from Dong Che Di, the most popular and influential online automotive review platform, 

Table 2 
Descriptive statistics of PEV indicators (continuous variables).

Dimension Indicator Unit Min Mean Max

General Information Longitude ◦ 77.19 114.75 132.65
Latitude ◦ 18.30 30.98 47.74
Price 10 K (CNY) 2.36 22.06 78
Vehicle Age Month 0 2.67 98

Basic Powertrain Specifications Maximum Engine Power kW 74 90.51 120
Maximum Motor Power kW 107 146.84 360
Electric Motor HP 75 343.67 789

Performance and efficiency Electric Range km 43 345.50 1032
Combined Range km 945 1232.23 1370
WLTC Combined Fuel Consumption (PHEVs) L/100 km 0.7 2.23 6.3
Electricity Consumption Per 100 km in CD Mode kWh 9.6 14.72 27.1
Maximum Speed km/h 130 192.27 265
Maximum Power kW 55 265.93 580

Battery and Charging Technology Battery Capacity kWh 8.3 46.71 140.0
Battery Energy Density Wh/kg 115 150.18 200
Fast Charging Time h 0.19 0.61 1.10
Slow Charging Time h 1.7 6.35 12.2

Maintenance Cost Estimated Total Maintenance Cost for 60,000 km CNY 957 5725.64 11,975
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known for its large and active user base, especially among young people (Zhu et al., 2024; Gao et al., 2024). All comments on Dong Che 
Di are exclusively submitted by verified PEV owners, who are required to provide specific details about their vehicle, including model, 
age, fuel and electricity consumption per 100 km, and total mileage traveled, before posting a review.

The initial dataset, spanning from November 14, 2018, to June 30, 2024, consisted of 20,078 user comments on PEVs, covering a 
wide range of topics such as exterior design, interior features, entertainment systems, pricing, and dealership experiences. It also 
included duplicate entries caused by multiple postings or system errors, as well as promotional or unintelligible comments. For the 
purpose of this study, only comments specifically addressing battery performance—such as range, charging speed, battery life, or 
energy efficiency—were considered valid for analysis. After filtering, 11,525 comments were identified as valid samples.

Additionally, this study collected corresponding technical specifications directly from the “specifications” section of the Dong Che 
Di platform for each PEV. The technical data covered six aspects: general information, basic powertrain specification, performance and 
efficiency, battery and charging technology, maintenance cost, and warranty information. In the “general information” section, the 
PEV purchase location was linked to the latitude and longitude of the corresponding prefecture-level city, enabling the retrieval of 
precise geographic coordinates. Descriptive statistics for the corresponding indicators are presented in Tables 2 and 3. To further 
illustrate the characteristics of the key continuous variables, distribution plots are provided in the Appendix.

Table 3 
Descriptive statistics of PEV indicators (categorical variables).

Dimension Indicator Encoding Description Frequency

General Information Manufacturer 1 Domestic Brand 
(Chen et al., 2020)

81.43 %

2 Foreign Brand (Tesla) 16.48 %
3 Foreign Brand (excluding Tesla) 2.09 %

Vehicle Model Year 2015 0.09 %
2017 0.03 %
2018 0.03 %
2019 0.33 %
2020 8.48 %
2021 21.38 %
2022 28.32 %
2023 17.40 %
2024 23.94 %

Basic Powertrain Specifications Powertrain Type PHEV 50.89 %
BEV 49.11 %

Vehicle Type 1 Sedan 43.31 %
2 SUV 43.88 %
3 Minivan 12.81 %

Engine (PHEVs) 1 1.5 T 93.90 %
2 2.0 T 6.10 %

Battery and Charging Technology High-Voltage Fast Charging Platform 400 V 70.11 %
800 V 29.89 %

Fast Charge Capacity 1 10–––80 % 7.89 %
2 20–––80 % 14.74 %
3 30–––80 % 73.27 %
4 80 % 4.09 %

Warranty Information Whole Vehicle Warranty Period 1 3 years or 100,000 km 2.09 %
2 4 years or 100,000 km 19.51 %
3 4 years or 80,000 km 16.49 %
4 5 years or 100,000 km 2.33 %
5 6 years or 150,000 km 59.58 %

Battery Pack Warranty Period 1 6 years or 150,000 km 0.12 %
2 8 years or 150,000 km 0.37 %
3 8 years or 160,000 km 15.13 %
4 8 years or 190,200 km 3.90 %
5 No limit on time or mileage for the original owner 80.48 %

Table 4 
Classification criteria for PEV user comments.

Included keywords Excluded keywords

Energy 
consumption

“energy”, “electric”, “energy consumption”, “battery”, “aging”, “degradation”, “electricity consumption”, 
“energy efficiency”, “power consumption”, “energy saving”, and “efficiency”

/

Charging 
experience

“charging”, “fast charge”, and “slow charge” “charging piles” and 
“charging stations”

Electric range “electric range”, “range”, “travel time”, “mileage”, “kilometer”, “km”, “meter”, “distance”, and “long 
distance”

/
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2.2. Study subject

In this study, a total of 11,525 valid comments were systematically categorized into three distinct groups: energy consumption, 
charging experience, and electric range. This categorization was automatically achieved through the meticulous identification of 
specific keywords within each sample sub-sentence, ensuring that the nuances of user feedback were accurately captured and 
appropriately classified. The detailed classification criteria and the associated keywords for each category are outlined in Table 4. 
Importantly, comments related to “charging piles” and “charging stations” were excluded to focus exclusively on PEV users’ satis
faction with battery performance. Each numeral in Fig. 2 represents the count of sub-sentences categorized.

Obviously, PEV users predominantly discussed aspects related to the electric range, accounting for 81.22 % of all comments. While 
there were mentions of energy consumption and charging experience, a significant majority of these comments—71.64 % and 76.53 %, 
respectively—also related to the electric range, suggesting a thematic overlap where the same battery performance sentiment was 
expressed across different topics. Consequently, this study focused exclusively on comments related to the electric range, totaling 
6,684 instances, to conduct a targeted quantitative analysis of PEV users’ satisfaction with battery performance.

2.3. Scoring rules

Textual analyses of user comments were conducted by developing and comparing sentiment scoring models through the use of 
three distinct NLP algorithms, including SnowNLP (Tang et al., 2020; Ming et al., 2022), Multinomial Naive Bayes (MNB) (Kibriya 
et al., 2004; Zulfikar et al., 2023), and Bidirectional Encoder Representations from Transformers (BERT) (Alaparthi et al., 2020; Deepa, 
2021). The basic principles, strengths, and weaknesses of these three NLP algorithms are summarized in Table 5.

These models targeted both PHEV and BEV categories, focusing on battery performance. Subsequently, this study used a sentiment 
dictionary for the sentiment analysis to classify the text as either positive or negative. It returned a probability score ranging from 
0 (indicating negative sentiment) to 1 (indicating positive sentiment), with values closer to the extremes reflecting stronger sentiment 
intensities. Fig. 3 provides a comprehensive overview of the data structure and scoring rules used in this study.

To select the most accurate NLP algorithm among SnowNLP, MNB, and BERT for subsequent modeling and analysis, this study also 
incorporated manual sentiment evaluation as a calibration benchmark. Although qualitative in nature, this manual evaluation pro
vided a reliable standard for assessing the performance of each algorithm. By using it as a reference, the errors across the three NLP 
algorithms can be effectively compared. Fig. 4 illustrates the framework used to compute the Refined Battery Performance Score, 
which integrates the performance of the three NLP algorithms.

This study initially set a score threshold, defined as the difference between any two of the three algorithms, at 0.5. When the score 
differences between each pair of the three NLP algorithms were all less than or equal to 0.5, the Refined Battery Performance Score was 
automatically set as the arithmetic mean value of the scores from the three NLP algorithms. Samples in this scenario accounted for 
83.31 % of the total valid dataset. 

ScoreRefined = Score =
1
N

∑N

n=1
Scoren (1) 

Where Score is the Refined Battery Performance Score after applying the average method; N is the number of algorithms used (in 
this study, N=3); Scoren represents the sentiment score provided by the n-th algorithm.

When the score difference between any two out of the three algorithms exceeded 0.5, this study implemented manual intervention. 

Fig. 2. Distribution of sub-sentence counts in PEV users’ comments on energy consumption, charging experience, and electric range.
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Table 5 
Comparative overview of NLP algorithms: SnowNLP, MNB, and BERT.

SnowNLP MNB BERT

Basic principles Based on probabilistic models, it trains a classifier to 
distinguish the sentiment tendencies of Chinese texts.

Based on Bayes’ theorem and assumes conditional 
independence among features. 

Based on the Transformer architecture, it utilizes the Multi-head Self- 
Attention mechanism to capture the relationships between words.

Strengths Chinese-specific (Tang et al., 2020); lightweight model (Yu 
et al., 2019); convenience and ease of use (Zhang et al., 
2023)

High computational efficiency (Kibriya et al., 2004); ease of 
use (Tama & Sibaroni, 2019); broad applicability (Xu, 2018)

Strong contextual understanding (Alaparthi et al., 2020); pre-trained 
model (Alaparthi et al., 2020); suitability for complex tasks (Li et al., 
2019)

Weaknesses Limited accuracy (Zhang et al., 2018) Independence assumption (Harzevili & Alizadeh, 2018); 
sensitivity to text length (Qiang, 2010)

Resource intensive (Ji et al., 2021); high training costs (Kenton & 
Toutanova, 2019)
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By qualitatively scoring samples (user comment sub-sentences)—as 0 for negative sentiment, 0.5 for neutral sentiment, and 1 for 
positive sentiment, this study then compared these manual qualitative scores with the three NLP scores and selected the closest NLP 
score as the Refined Battery Performance Scores. Samples under this category accounted for 16.69 % of the total valid dataset. 

ScoreRefined = Scoreselected (2) 

Finally, the scoring error for the n-th algorithm was defined as the mean of the absolute differences between the algorithm’s scores 
and the standard sentiment scores: 

Scoreerrorn =

∑M
m=1

⃒
⃒Scoren − ScoreRefined

⃒
⃒

m
(3) 

where m represents the m-th comment sample, with a total of M comment samples.

2.4. XAI for understanding factors’ contributions

2.4.1. Histogram Gradient boost algorithm
In this study, the Histogram Gradient Boosting (HGB) algorithm was utilized to address the demands of the big dataset. The HGB 

algorithm, an advanced improvement over the traditional Gradient Boosted Decision Trees (GBDT), significantly simplifies compu
tational demands by discretizing continuous feature values into finite bins, forming the basis for constructing decision trees (Javaid 
et al., 2022; Nhat-Duc & Van-Duc, 2023). This method considerably reduces the number of potential split points, enhancing 
computational speed and decreasing memory usage (Shi et al., 2022). The discretization of feature values, Bin(xi), is given by: 

Fig. 4. Calculating framework for the Refined Battery Performance Score.

Fig. 3. Framework of PEV user sentiment score & corresponding PEV indicators.

L. Shi et al.                                                                                                                                                                                                              Transportation Research Part D 141 (2025) 104644 

9 



Bin(xi) =

⌊
xi − min(xi)

w

⌋

(4) 

where xi is a feature value, min(xi) is the minimum value of the feature, and w is the interval width determined by the number of 
bins.

Subsequent tree construction relies on the gradients (gi) and Hessians (hi) calculated for each observation from the loss function l, 
with. 

gi =
∂l(yi, ŷi)

∂ŷi
(5) 

and 

hi =
∂2l(yi, ŷi)

∂ŷi
2 (6) 

Each node in the tree selects the optimal split based on the histograms of the gi and hi. The gain from a potential split is calculated as: 

Gain =

( ∑
i∈Lgi

)2

∑
i∈Lhi + λ

+

( ∑
i∈Rgi

)2

∑
i∈Rhi + λ

−

( ∑
i∈Sgi

)2

∑
i∈Chi + λ

(7) 

where L and R are the sets of instances in the left and right child nodes post-split, C is the set of instances in the current node, and λ is 
the regularization term.

2.4.2. Permutation feature importance
Permutation Feature Importance assesses the importance of different features concerning the predictive power of a statistical model 

(Altmann et al., 2010; Kaneko., 2022). This method involves shuffling each predictor variable within the dataset individually and 
observing the resultant decline in the model’s performance metric. The central hypothesis is that randomizing the values of a pivotal 
feature significantly undermines the model’s accuracy, while altering a less crucial feature has minimal impact.

Table 6 
Errors of Battery Performance Score using SnowNLP, MNB, and BERT.

Battery Performance Score errors

SnowNLP 0.1296
MNB 0.0610
BERT 0.2925

Fig. 5. Permutation feature importance for Battery Performance Score (a) PHEVs; (b) BEVs.

L. Shi et al.                                                                                                                                                                                                              Transportation Research Part D 141 (2025) 104644 

10 



Consider the original dataset containing features X1, X2, …, Xn and target variable Y. For this regression model, performance is 
quantified using the mean squared error, denoted as mseorig(X,Y).

To assess feature importance, a new dataset is generated by permuting the values of feature Xp within the dataset. Specifically, the 
values in column j are shuffled randomly, breaking any correlation between Xp and Y. The model’s performance is then recalculated on 
this permuted dataset, noted as mseperm

(
Xperm,Y

)
.

The importance of feature Xp is quantified as the change in performance due to this permutation: 

Importance
(
Xp

)
= mseorig(X,Y) − mseperm

(
Xperm,Y

)
(8) 

A larger decrease in performance signifies a higher importance of the feature. This method provides a direct and intuitive measure 
of each feature’s impact on the model’s accuracy (Debeer & Strobl, 2020).

2.5. PEV users’ evaluation index

Due to varying levels of PEV adoption and market acceptance across different regions in the Chinese Mainland, such disparities can 
significantly influence the interpretation of user sentiment scores derived from comments. To equitably and comprehensively study 
battery performance sentiment scores regarding prefecture-level city j, this study have developed standardized evaluation indices, 
denoted as EIj

norm. The evaluation index EIj
norm for electric range are calculated separately based on their corresponding scores. 

Sj =

∑Nj
k=1Sjk

Nj
(9) 

where Sj is the battery performance satisfaction evaluation score of prefecture-level city j; Sjk is the battery performance satisfaction 
score of the k-th sample in prefecture-level city j; Nj is the number of sample reviews corresponding to prefecture-level city j.

Fig. 6. Distribution of PEV user online comment hotspots.
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Each city j associated with its corresponding province p(j) and the province p’s total PEV stock Vp(j) by the end of 2023 (Ministry of 
Public Security’s Traffic Management Bureau, 2023), 

∑P
p=1Vp is the sum of PEV ownership across the Chinese Mainland. The eval

uation index EIj
norm for a prefecture-level city, j is calculated by normalizing the average sentiment score EIj relative to the total PEV 

stock of its province, allowing it to range from 0 to 1, thereby forming a comparable metric across all cities: 

EIj =
Sj • Vp(j)
∑P

p=1Vp
(10) 

EIj
norm =

EIj − min(EI)
max(EI) − min(EI)

(11) 

where min(EI) and max(EI) are the minimum and maximum values of EIj across all cities, respectively.

3. Results analysis

In total, this study collected user comments on PEVs from 268 prefecture-level cities across the Chinese Mainland. After scoring 
these comments, this study discovered a pronounced polarization in user evaluations. The proportion of Battery Performance Scores 
greater than 0.9 or less than 0.1 amounted to 74.79 %. This polarization can be attributed to the structure and dynamics of online 
environments, such as social media and review platforms, where psychological tendencies often amplify extreme sentiments, leading 
to a scarcity of neutral opinions in online reviews. This phenomenon is typically explained by underlying network structures and group 
dynamics that form echo chambers, reinforcing strong group identities and more extreme viewpoints (Phillip et al., 2023; Wankhade 
et al., 2022).

3.1. NLP models’ performance

Concentrating on the satisfaction with battery performance attributes, this study quantified the sentiment score errors across three 
different NLP algorithms: SnowNLP, MNB, and BERT. The results of the scoring error are detailed in Table 6. These results reveal that 
MNB models demonstrated the highest accuracy and reliability in analyzing battery performance sentiment of texts pertaining to 
specific terminologies within the PEV domain. Consequently, for subsequent studies, the scores for both types derived from the MNB 
models were utilized.

Fig. 7. Geographic distribution of the (a) Battery Performance Evaluation Index − PHEV and (b) Battery Performance Evaluation Index – BEV.
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3.2. HGB models’ performance

The HGB algorithm was employed to model the scores for PHEVs and BEVs across two aspects, constructing a total of four HGB 
models. The Mean Squared Error (MSE) for these models were as follows: Battery Performance Score for PHEVs: 0.1949; and Battery 
Performance Score for BEVs: 0.1791.

3.3. Top 5 important features

The permutation feature importance for each of the four models was subsequently calculated. Fig. 5 evaluates the importance of the 
top five features across two scores for both PHEVs and BEVs.

It reveals the considerable influence of geographic location and price on the battery performance of both PHEVs and BEVs. 
Moreover, specific vehicle attributes, such as fast charging capabilities and energy efficiency, prove to be critical in shaping consumer 
preferences and vehicle usability. For BEVs, the electric range also emerges as a crucial factor, influencing the practicality and appeal 
of these vehicles.

Consequently, subsequent analyses in this study will focus on the three most influential factors—geographic location, price, and 
electric range—while also examining vehicle age and model year to elucidate their impact on consumer preferences further.

3.4. Geographic location

Significant regional disparities in the volume of comments are depicted in Fig. 6. This indicates a pronounced urban–rural divide 
and east–west gradient in PEV adoption rates and user engagement levels across the Chinese Mainland. Economically developed cities, 
such as Beijing, Shanghai, Hangzhou, Guangzhou, and Chengdu, are centers of concentrated feedback from PEV consumers and have 
the highest sales of PEVs (Zheng et al., 2020). In comparison, there are considerably fewer comments from China’s inland and western 
regions. This distribution may be influenced by a variety of factors, including regional economic disparities, differences in infra
structure such as charging stations, and varying levels of government incentives for PEVs.

Fig. 7(a) and (b) illustrate the regional distributions of the Battery Performance Evaluation Index across different areas in the 
Chinese Mainland. The gray-shaded regions represent cities without available data or comments, which reflect the lower adoption 
rates of PEVs in China’s western and northern regions. The market development for PEVs in these areas is relatively slow, whereas the 
western region, often characterized by complex terrain and sparse populations, has impacted the construction of electric vehicle 
infrastructure. This has resulted in the western region having the lowest density of EV charging stations (Chen et al., 2023; Wu et al., 
2015). Differences between the northern and southern regions have been identified due to temperature variations (Wu et al., 2023) and 
GDP (Qiu et al., 2024; Li et al., 2019).

The Battery Performance Evaluation Index reveals widespread dissatisfaction with battery performance among PHEV users. In 
contrast, BEV users generally report higher satisfaction with battery performance, especially in the Central Plains region of China. This 
discrepancy can be attributed to several factors: Firstly, the battery capacity of PHEVs is significantly smaller than that of BEVs. PHEV 
users often opt to operate in electric mode to save on fuel costs, using the battery whenever possible. However, the electric range of 
PHEVs is often insufficient to fully meet these needs. Secondly, this frequent cycling between charging and discharging results in a 
higher number of battery cycles for PHEVs compared to BEVs, accelerating battery degradation as more cycles lead to faster aging (Hu 
et al., 2017). Thirdly, the driving habits of PHEV drivers may also differ from those of BEV drivers. For example, PHEV drivers are more 
likely to deeply charge and discharge the battery, leading to more inaccurate predictions of the remaining battery range and more 
severe battery degradation.

Furthermore, this study intriguingly found that on a prefecture-level city scale, third and fourth-tier cities often receive higher 
evaluations than first-tier cities such as Beijing and Shanghai. For instance, in the evaluation of PHEV battery performance, only third 
and fourth-tier cities such as Xuancheng, Hezhou, and Danzhou displayed positive feedback, see Fig. 7(a). This trend may be attributed 
to several factors: First, compared to the larger first and second-tier cities, the smaller geographic areas of third and fourth-tier cities 
make the electric driving range of PHEVs more suitable and sufficient for daily travel needs (Xiong et al., 2023). Second, the total costs 
associated with PHEVs are generally lower than those for gasoline-powered vehicles, offering a cost-effective alternative for residents 
(Alanazi., 2023). Thirdly, reduced traffic congestion in these areas leads to more efficient battery use and less strain on PHEV systems, 
alleviating a common source of dissatisfaction. Lastly, relatively lower expectations in smaller cities may lead to greater satisfaction 
when these expectations are met or exceeded. This observation is supported by the findings of Asensio et al. (2020), which also 
revealed that the highest incidence of negative sentiments in the US is not in rural areas or smaller urban clusters, but rather in densely 
populated urban centers.

3.5. Price

Distinct consumer satisfaction disparities in battery performance evaluations across different vehicle price categories for PHEVs 
and BEVs are highlighted in Fig. 8. Across all price categories, BEV users consistently report higher satisfaction compared to PHEV 
users, with this trend becoming more pronounced at a higher price.

At a price point below 150,000 CNY, PHEVs demonstrated a predominantly negative response rate on battery performance 
satisfaction, with 60 % negative evaluations compared to 40 % positive. Conversely, BEVs exhibited more favorable responses, with 
only 37 % negative and 63 % positive evaluations. In the mid-price category, ranging from 150,000 to 300,000 CNY, negative 
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evaluations for PHEVs slightly decreased to 57 %, while positive evaluations increased to 43 %. BEVs continued to show improved 
satisfaction, with 32 % negative and 67 % positive evaluations. For vehicles priced above 300,000 CNY, the trend in improved 
satisfaction persisted, with PHEVs showing a further decrease in negative evaluations to 51 % and an increase in positive evaluations to 
49 %, while BEVs recorded the lowest level of negative evaluations at 29 % and the highest level of positive evaluations at 71 %.

In this study, the average electric range for PHEVs is 78.74 km in the price category below 150,000 CNY, 104.66 km in the 150,000 
to 300,000 CNY range, and 173.49 km for vehicles priced above 300,000 CNY. For BEVs, the average electric range is significantly 

Fig. 8. PEV users’ evaluation by price categories for Battery Performance Score for (a) prices less than 150 K CNY, (b) prices between 150 K and 
300 K CNY, and (c) prices over 300 K CNY.
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higher, with 425.24 km in the under 150,000 CNY category, 584.34 km in the 150,000 to 300,000 CNY range, and 641.94 km for 
vehicles priced above 300,000 CNY.

This pattern underscores the significant influence of vehicle type and pricing on user satisfaction concerning battery performance. 
The consistently lower negative evaluations among BEVs across all price brackets suggest that PHEV users preferred having a longer 
electric range. As vehicle prices increase, both PHEVs and BEVs tend to exhibit improved satisfaction levels, which can be attributed to 
the inclusion of higher-capacity batteries and more advanced range-enhancing technologies in higher-end models. Moreover, the 
diminishing negative evaluations in higher-priced PHEVs suggest that as investment in hybrid technology increases, the gap in range 
satisfaction between PHEVs and BEVs could narrow.

3.6. Battery degradation

The interactions of vehicle age and battery degradation on user evaluations of battery performance for PHEVs and BEVs are 
illustrated in Fig. 9. It’s important to note that the points in Fig. 9 do not represent individual user comments but are clustered data 
points. This study found that the electric range of PHEVs is primarily concentrated between 50 and 125 km, while BEVs exhibit a 

Fig. 9. Battery Performance Score under the interaction of vehicle age and electric range.

Fig. 8. (continued).
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bimodal distribution, with most ranges clustered within two distinct intervals: 0–300 km and 400–800 km. This distinct distribution 
underscores the significant diversity in range capacities among BEV models, which reflects differing design priorities and consumer 
requirements—some are tailored for urban, short-distance travel, while others are designed for long-range, intercity travel. This 
extensive range capability in BEVs contrasts sharply with the more confined range of PHEVs, which generally depend on an internal 
combustion engine for longer journeys.

Over a longer time, particularly beyond 4–5 years, PEVs garner predominantly negative user sentiments, particularly as the ma
jority of these vehicles demonstrate an electric range of 100 km or less. Such limited range severely constrains the vehicle’s utility, 

Fig. 10. PEV users’ evaluation by vehicle age.
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impacting daily usability and convenience. This negative sentiment is more pronounced in older PEVs, where the limitations imposed 
by battery wear and reduced range overshadow the anticipated benefits of electric mobility.

Furthermore, this study compared the user experiences of PHEVs and BEVs over three vehicle age periods: under 1.5 years, 1.5 to 3 
years, and over 3 years, highlighting the differences between these two vehicle types in terms of battery performance satisfaction, 
shown in Fig. 10. Notably, this study uncovered an intriguing trend: in the Chinese Mainland, user reviews of BEVs consistently rate 
higher than those of PHEVs, particularly after three years of use.

Vehicles under 18 months old displayed distinct patterns for battery performance: PHEVs registered a significant 58 % in negative 
evaluations, compared to 42 % positive, indicating prevalent dissatisfaction. BEVs, on the other hand, showed predominantly 
favorable outcomes, with just 32 % negative against 68 % positive evaluations. As the vehicle age bracket increased to between 18 and 
36 months, the trend persisted, though slightly less pronounced; PHEVs received 57 % negative versus 43 % positive evaluations, while 
BEVs had 41 % negative versus 59 % positive evaluations. Most notably, for vehicles older than 36 months, PHEVs showed a significant 
spike in negative evaluations at 80 %, with merely 20 % positive feedback, whereas BEVs maintained a more stable satisfaction profile 
with 37 % negative and 63 % positive evaluations.

This trend observed across different vehicle ages may be attributed to several factors influencing user experience and vehicle 
performance. PHEVs, which integrate both electric and combustion engine systems, may experience more pronounced degradation in 
electric performance over time, exacerbated by the dual strain on their power systems, leading to increased negative evaluations as the 
vehicle ages (Hu et al., 2017). Conversely, BEVs, which rely solely on their electric systems, tend to maintain a more consistent 
performance, reflecting in relatively stable positive evaluations even as the vehicle ages. This suggests that the singular focus on 
electric technology in BEVs might offer better long-term electric range reliability compared to PHEVs, whose hybrid nature might 
compromise their performance over extended use.

3.7. Electric range

This study also examined user perceptions of battery performance across various electric ranges in PHEVs and BEVs. As illustrated 
in Fig. 11, the box plot utilizes box plots to categorize Battery Performance Scores by electric range segments. Each box plot delineates 
the interquartile range (IQR), encapsulating the middle 50 % of the dataset, extending from the 25th percentile (Q1) to the 75th 
percentile (Q3), with the median value (Q2) marked by a horizontal line within each box. Whiskers on the plots indicate the full range 
of the data, stretching from the minimum to the maximum values observed. Furthermore, the mean battery performance scores are 
visually emphasized through a red line connected with markers.

This study found that the assessments of PEV battery performance generally exhibited a positive correlation with electric range, 
indicating that higher electric range PEVs tend to receive more favorable evaluations from users. This finding underscores the 
importance of enhancing electric range capabilities in shaping user perceptions of PEVs, consistent with Delmonte et al. (2020). It 

Fig. 10. (continued).

L. Shi et al.                                                                                                                                                                                                              Transportation Research Part D 141 (2025) 104644 

17 



reflects a growing user expectation for PEVs to not only match but exceed the convenience and reliability of traditional internal 
combustion vehicles.

The findings also indicate that perceptions of battery performance in PHEVs are mixed, with a more dispersed distribution of 
reviews. In contrast, BEVs consistently scored higher across most electric range categories, exhibiting a narrower IQR, which suggests 
that evaluations from BEV users are more concentrated and generally more positive. This discrepancy in user feedback is likely 
attributable to differences in battery usage patterns. PHEVs operate with a combination of a battery and a combustion engine, resulting 
in a hybrid system that can complicate the modes of battery usage and charging. This complexity might lead to inconsistencies in 
battery performance, as different users experience varied driving conditions (such as urban versus highway driving). On the other 
hand, BEVs rely solely on electrical power, typically featuring more optimized and consistent charging and usage patterns.

User evaluations of battery performance in PHEVs with an all-electric range of less than 150 km are notably poor, with average 
Battery Performance Scores all falling below 0.5. This may be due to the limited range forcing vehicles to frequently switch to gasoline 
mode, thereby diminishing the perceived advantages of the electric mode. Such frequent transitions can lead to concerns regarding 
battery reliability, lifespan, and the overall utility of the vehicle as an electric option, resulting in lower performance scores. However, 
when the all-electric range of PHEVs is between 150–200 km, user ratings reach a local maximum. Beginning with the 150–200 km 
electric range, the average battery performance evaluations by PHEV users shift from a negative to a positive perspective. This reflects 
that PHEVs begin to offer a more seamless electric driving experience at this electric range, capable of meeting a broader spectrum of 
daily travel needs without the need to activate the combustion engine. This range is likely viewed as an optimal point where the 
benefits of electric driving can be fully enjoyed without concerns about limited range, thereby leading to higher satisfaction and, 
correspondingly, higher performance scores. In the current highest all-electric range bracket for PHEVs (250–300 km), the average 
rating surpasses 0.6, marking the highest evaluations across all ranges.

Fig. 11. Distribution of Battery Performance Scores by electric range categories.
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3.8. Vehicle model by year

In the realm of PEVs, Tesla stands out as a leading company, with the Chinese Mainland being its largest international market 
(Yang, 2024). Tesla is at the forefront of electric vehicle technology and business innovation, significantly shaping the dynamics of the 
PEV industry. Thus, this study focused on Tesla as an international benchmark and investigated prominent Chinese manufacturers such 
as BYD, Geely, and Zeekr to compare user satisfaction with battery performance across various model years. Fig. 12 displays this 
comparison using box plots to represent Battery Performance Scores for both domestic brands and Tesla, along with a line plot 
indicating their average performance scores.

Several trends and observations are evident. Tesla’s battery performance evaluation from users exhibits a consistently high trend 
across model years, maintaining an average Battery Performance Score above 0.6 from 2020 to 2024, which underscores a high and 
consistent level of user satisfaction. Tesla’s scores started relatively high in 2015, saw a dip in 2017, but subsequently stabilized to 
sustain an excellent level of performance over the following years. The slight fluctuations observed indicate minor variances in battery 
performance across different model years but generally depict Tesla as maintaining a competitive edge. However, from 2022 onwards, 
the gap in performance scores between Tesla and domestic brands narrows, indicating that domestic brands have substantially caught 
up in terms of battery performance.

Domestic brands have demonstrated substantial improvements in Battery Performance Scores over time. Starting from a very low 
score in 2015, there was a marked increase, especially notable from 2018 onwards. By 2022, the scores had improved substantially and 
remained relatively stable. Since then, the overall average battery performance satisfaction for all domestic brand models has generally 
been within the satisfactory range, with users’ Battery Performance Scores commonly exceeding 0.5. This variability is likely a 
consequence of the rapid advancements in the PEV industry, which include the development of more efficient battery technologies, 
batteries with higher energy density, and advanced motors and control systems, all of which have significantly enhanced the per
formance of these vehicles (Xin, 2024).

However, compared to Tesla, the box plots of domestic brands show a larger IQR, indicating that consumer satisfaction with the 
battery performance of domestic brands has been mixed. This may be due to differences in the quality of battery production among 
different domestic PEV brands, leading to inconsistent battery performance. As a result, consumers always have varied opinions on the 
reliability and durability of batteries from domestic brands.

4. Discussions & Implications

4.1. Feedback for BEVs is consistently more favorable than for PHEVs

The scoring analysis shows that users have a more negative perception of battery performance in PHEVs compared to BEVs. Several 
potential factors may contribute to this sentiment. Firstly, in contrast to BEVs, which prioritize battery energy management and larger 
battery capacities, PHEVs may lack similarly robust battery management systems by manufacturers. Additionally, user driving 

Fig. 12. Domestic and foreign brand (Tesla) PEVs’ Battery Performance Scores by model year.
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behaviors may lead to more frequent deep charging and discharging cycles in PHEVs, adversely affecting battery health over time (Hu 
et al., 2017). Another possible factor is that PHEV buyers might have overly high expectations regarding battery efficiency’s impact on 
fuel savings, leading to lower satisfaction scores. In any case, this finding warrants further investigation to uncover underlying causes.

Furthermore, perceptions of battery performance in PHEVs are mixed, with a more dispersed distribution of reviews, likely due to 
the hybrid nature of these vehicles. Offering both electric and combustion options, PHEVs result in diverse user experiences influenced 
by individual driving habits, range expectations, and usage patterns. In contrast, BEV reviews are more concentrated and generally 
positive, as BEVs provide a fully electric experience that aligns closely with user expectations for all-electric functionality and longer 
range, leading to more consistently favorable feedback.

4.2. Key factors shaping user perceptions of PEV battery performance include location, price, fast charging capabilities, energy efficiency, 
and electric range

Latitude and longitude as geographic factors are crucial in influencing user evaluations of PEVs, especially in terms of PEV 
adoption. However, while geographic location remains important in the post-purchase battery reviews of PEV users, there is no clear 
monotonic and consistent pattern of variation with longitude or latitude. Instead, the level of urban development appears to be a more 
decisive factor in shaping the opinions of PEV owners in a city. Moreover, price often dictates the quality and capability of the battery 
management systems that manufacturers opt to install, influencing overall battery longevity and performance.

Furthermore, fast charging capabilities are increasingly influencing consumer preferences, as they allow quicker turnaround times 
and greater convenience, particularly for consumers with demanding schedules. Energy efficiency also plays a crucial role, as more 
efficient vehicles can travel longer distances on a single charge, reducing the frequency and cost of recharges for users. Lastly, the 
electric range of PEVs, particularly BEVs, remains a critical determinant of vehicle attractiveness. Longer ranges are perceived as more 
versatile and reliable, diminishing range anxiety and making these vehicles more suited for various uses, from daily commutes to 
extended road travels (Delmonte et al., 2020).

4.3. City characteristics and regional development influence PEV user satisfaction across various city tiers in the Chinese Mainland

City characteristics and regional development play significant roles in PEV user adoption and satisfaction, with economically 
developed cities such as Beijing and Shanghai having a concentration of reviews. These cities not only have advanced economic 
development and charging infrastructure, which contribute to the highest sales of PEVs (Zheng et al., 2020), but also host tech-savvy 
populations with high adoption rates of new technologies, leading to more active participation in online PEV review platforms. In 
contrast, the PEV market penetration in western and northern China has developed more slowly, with the western region having the 
lowest density of charging stations (Chen et al., 2023; Wu et al., 2015). Regional temperature differences (Wu et al., 2023) and GDP 
(Qiu et al., 2024; Li et al., 2019) also contribute to disparities between southern and northern China.

Third and fourth-tier cities often report higher levels of PHEV satisfaction compared to first-tier cities. This may be attributed to 
several intertwined factors. Firstly, the compact size of these lower-tier cities matches well with the electric driving ranges of PHEVs, 
making them ideal for daily commutes (Xiong et al., 2023). Secondly, the costs associated with owning and operating PHEVs are 
generally lower than gasoline vehicles, offering a more economical alternative in these areas (Alanazi, 2023). Thirdly, the lower levels 
of traffic congestion in these smaller cities improve battery efficiency and lessen the strain on PHEV systems, thereby mitigating a 
common dissatisfaction factor. Lastly, the relatively modest expectations of residents in these less developed areas often translate into 
higher satisfaction levels when their expectations are fulfilled or surpassed, further contributing to favorable evaluations.

4.4. Higher-priced PEVs show increased user satisfaction in battery performance

As the price of PEVs increases, there is a notable improvement in user satisfaction concerning battery performance. Specifically, for 
PHEVs, satisfaction improves from 40 % (below 150,000 CNY) to 43 % (150,000–300,000 CNY) and 49 % (above 300,000 CNY). For 
BEVs, it rises from 63 % (below 150,000 CNY) to 67 % (150,000–300,000 CNY) and 71 % (above 300,000 CNY). This trend is largely 
because higher-priced PEVs are often equipped with more advanced technologies and higher-quality battery components and man
agement systems, which are crucial for maintaining battery health and longevity.

4.5. Positive correlations between PEV battery performance and electric range, with distinct local optimum, influence user satisfaction

In the current Chinese market, the electric range for PHEVs typically spans from 50 to 125 km, whereas BEVs demonstrate a 
bimodal distribution, predominantly clustering in the ranges of 0–300 km and 400–800 km. This diverse range spectrum underscores 
the varied design objectives and consumer demands, with some BEV models designed for urban, short-distance commuting and others 
for extended, intercity travel. In contrast, PHEVs, which primarily rely on their internal combustion engines for extended travel 
distance, offer a more limited all-electric range.

A general positive correlation emerges between PEV battery performance and electric range, suggesting that a longer electric range 
may be an essential factor in shaping favorable user experiences (Delmonte et al., 2020). Users tend to express dissatisfaction with 
battery performance in PHEVs with an all-electric range below 150 km, as evidenced by Battery Performance Scores consistently 
falling below 0.5. This trend may be attributed to user expectations for greater electric autonomy, as short-range capabilities fall short 
of their demands for more sustained electric driving. Consequently, low-range PHEVs frequently rely on the combustion engine, 
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possibly leading to lower user satisfaction among those expecting a predominantly electric driving experience. Interestingly, when the 
all-electric range of PHEVs extends to 150–200 km, user evaluations reach a local maximum, indicating a shift from predominantly 
negative to more positive attitudes. This improvement suggests that a range within this bracket may meet a crucial threshold, offering 
sufficient electric driving capacity for daily commutes or city trips, reducing dependency on the combustion engine, and aligning more 
closely with user expectations. As such, this range may provide an optimal balance for users seeking a blend of electric and hybrid 
functionality in their PEVs. At the upper limit of PHEV capabilities, within the 250–300 km all-electric range, user satisfaction peaks, 
with average ratings exceeding 0.6. This represents the highest evaluations across all PHEV electric ranges and implies that users value 
an electric range close to that of entry-level BEVs, as it offers a near-complete electric driving experience without frequent recharging. 
Similarly, for BEVs, user satisfaction reaches a peak at the 550–600 km range, with exceptionally high satisfaction levels reported when 
the electric range exceeds 800 km, indicating a strong preference for extended range capabilities among BEV users.

4.6. PEV battery satisfaction declines with prolonged usage, particularly notable in PHEVs

After over 4–5 years of use, PEVs tend to receive predominantly negative user feedback, especially those with an electric range of 
100 km or less. This pattern suggests that limited electric range becomes a critical source of dissatisfaction over time, as users’ initial 
expectations of convenience and efficiency wane in the face of frequent recharging requirements. Notably, PEV models with shorter 
electric ranges appear to fall short in terms of performance durability, failing to meet the long-term expectations of users and resulting 
in a significant decline in positive evaluations as the vehicles age.

Battery performance satisfaction declines significantly with vehicle age, particularly for PHEVs. For PHEVs, positive evaluations 
change from 42 % (under 1.5 years old) to 43 % (1.5–3 years old) and then significantly drop to 20 % (over 3 years old). In contrast, 
BEVs maintain relatively stable satisfaction levels, with positive evaluations of 68 % (under 1.5 years old), 59 % (1.5–3 years old), and 
63 % (over 3 years old). This greater resilience of BEVs to aging effects can be attributed to their typically larger battery capacities and 
advanced battery management systems, which together reduce the frequency of range reduction and support greater battery longevity.

4.7. Tesla upholds high battery performance ratings, while Chinese domestic brands progressively narrow the gaps

User evaluations reveal consistently high Tesla battery performance across model years, with an average score above 0.6 from 2020 
to 2024, highlighting its reputation for advanced battery technology and innovation (Yang, 2024). However, while Tesla’s perfor
mance scores remain robust, the gap between Tesla and domestic Chinese EV brands has narrowed since 2022. Domestic brands have 
demonstrated significant improvements in Battery Performance Scores over time. Beginning with very low scores in 2015, there was a 
notable increase, particularly from 2018 onwards. By 2022, the scores had improved substantially and remained relatively stable. 
Subsequently, the overall average battery performance satisfaction for all domestic brand models has generally been within the 
satisfactory range, with users’ Battery Performance Scores consistently exceeding 0.5. These rapid gains in battery performance among 
domestic brands likely result from increased government support, enhanced investment in battery R&D, and a competitive push to 
match or surpass Tesla’s standards in the Chinese market. Domestic manufacturers have strategically focused on producing high- 
quality, locally optimized batteries at more accessible price points, broadening PEV access for Chinese consumers.

Despite these improvements, consumer satisfaction with domestic brands’ battery performance remains somewhat mixed 
compared to Tesla’s consistently high ratings. While many users’ express satisfaction with the advancements in domestic PEVs, some 
remain concerned about long-term battery reliability and degradation. Nonetheless, as domestic brands continue to focus on 
enhancing their battery technologies and management systems, it is likely that the performance gap will continue to close, potentially 
increasing competition and consumer options within the Chinese Mainland’s expanding PEV market.

5. Conclusions

This study developed a systematic method to process and quantify online PEV user comments on battery performance using three 
NLP algorithms—SnowNLP, MNB, and BERT—with MNB chosen for its low error margin in sentiment analysis. By linking these 
sentiment scores with each PEV’s technical specifications, the study applied the HGB machine learning algorithm and explainable AI 
techniques, focusing on permutation feature importance to uncover the top five factors influencing user sentiments: geographic 
location, price, fast charging capabilities, energy efficiency, and electric range. This comprehensive approach offers valuable insights 
into the key factors shaping consumer evaluations of PHEVs and BEVs.

To enhance PEV satisfaction, this study recommends strategic interventions targeting identified challenges. First, improving PHEV 
battery performance is crucial for reliability and satisfaction. Second, capitalize on favorable PHEV feedback in third- and fourth-tier 
cities by implementing targeted financial incentives, such as tax reductions or subsidies, to boost adoption. Third, extend PHEV ranges 
to 150–200 km and support BEV advancements to achieve optimal ranges of 550–600 km through increased funding for battery 
research and incentives for manufacturers. Finally, establish a trade-in program for PEVs older than 4–5 years or with ranges under 
100 km to encourage upgrades to models with advanced battery technology, promoting a more sustainable and satisfying user 
experience. Addressing these issues will help minimize adoption barriers, maximize satisfaction, and support a sustainable automotive 
future.

Several avenues remain for advancing PEV market insights. One important consideration is the potential sampling bias introduced 
by online reviews (Phillip et al., 2023), as individuals who leave reviews may systematically differ from those who do not, due to 
varying levels of engagement with EVs or demographic differences (Zhao et al., 2022). Addressing this issue in future research could 
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Fig. A1. Distribution of the key continuous variables.
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involve incorporating additional data collection methods, such as broader surveys or interviews, to complement the findings from 
online reviews. Furthermore, integrating socio-economic factors, such as income, education, and environmental awareness, can 
enhance understanding of adoption drivers, supporting tailored strategies for varied consumer segments. Given the rapid technological 
advancements in PEVs, it is also crucial to investigate how these innovations influence consumer perceptions and drive market dy
namics. Also, expanding our research to key markets in Europe and the U.S., along with ongoing platform updates, will enable 
comparative international analyses, providing valuable insights into global trends and regional differences.
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