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Abstract

Battery Run-down under the Electric Vehicle 
Operation (BREVO) model is a model that links the 
driver’s travel pattern to physics-based battery 

degradation and powertrain energy consumption models. 
The model simulates the impacts of charging behavior, 
charging rate, driving patterns, and multiple energy 
management modules on battery capacity degradation. 
This study implements reinforcement learning (RL) to the 
simplified BREVO model to optimize drivers’ decisions on 
charging such as charging rate, charging time, and 
charging capacity needed. This is done by a reward 
function that considers both the driver’s daily travel 
demands and the minimization of battery degradation 
over a year. It shows that using appropriate charger type 

(No Charge, Level 1, Level 2, direct-current Fast Charge 
[DCFC], extreme Fast Charging [xFC]) with an appropriate 
charging time can reduce battery degradation and total 
charging cost at the end of the year while satisfying 
driver’s daily travel demand. Using the Level 2 charging 
every day for night charging can reduce the battery 
capacity by 1.3819 ‰ whereas following the charger type 
and charging time suggestions of the RL will bring this 
number down to the level of 0.8037 ‰ over a one-year 
timespan. This gap between degradation rates gets 
bigger when one prefers using DC FC or xFC only respec-
tively. Based on their daily travel demands, this RL model 
provides valuable strategic guidance to drivers to increase 
the battery lifetime and minimize the total cost of owning 
an electric vehicle.

Introduction

The U.S. has committed to reaching net-zero green-
house gas (GHG) emissions no later than 2050 and 
has a goal of reducing GHG emissions by 50–52 % 

compared to 2005 levels by 2030 [1]. This objective has 
caused numerous automotive manufacturers to redirect 
their product strategies towards electric vehicles (EVs). 
To reach this goal and to progress to a cleaner transpor-
tation system, extensive research on the power source 
of EVs is required and crucial. This study uses reinforce-
ment learning (RL) aiming at creating an artificial intelli-
gent driven model for the vehicle system by integrating 
the consideration of driving behavior data; which can 
facilitate an understanding of how to efficiently and effec-
tively move from the current petroleum-based transpor-
tation energy system to one that is more sustainable, 
intelligent and energy-diverse.

RL is one of the subfields of machine learning that 
consists of an agent trying to learn an optimal behavior 
by interacting with its environment through trial and error 
[2]. The agent receives a reward or penalty after each of 
its actions and tunes its behavior accordingly. The goal 

of the agent is to find the actions that maximize the 
cumulative reward. The machine learning approach is not 
new in the studies related to EVs. Some studies develop 
feature-based machine learning models for estimating 
the battery capacity of different battery types using real-
life data and considering different driving conditions such 
as mileage and time of the day [3]; and some studies use 
these models to predict battery health using the chem-
istry and physics of batteries based on the environmental 
conditions such as temperature [4, 5]. In addition, in [6] 
and [7] the authors use several machine learning algo-
rithms to predict the aging of the battery including 
K-Nearest Neighbors, Decision Trees, Support Vector 
Machines, and Deep Learning. Besides the battery aging 
estimation, some studies aim to reduce charging costs. 
In [8], authors employ Deep Learning to propose a cost-
efficient charging strategy based on the environmental 
conditions, pricing, and driving data. Moreover, there are 
also studies using RL in the EV setting. More specifically, 
there exist studies that take advantage of RL to maximize 
battery lifetime by optimizing cabin thermal management 
and traction [9], or controlling the power flow distribution 
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to minimize RMS battery current. [10] Many studies 
consider machine learning algorithms, more specifically 
RL algorithms to focus on charging cost [11, 12, 13] or focus 
on battery lifetime only [14, 15]; and barely a few studies 
consider combining both aspects including drivers’ travel 
demands and patterns, or a variety of charger types.

The Battery Run-down under Electric Vehicle 
Operation (BREVO) is model is one of the models that 
links the driver’s travel pattern to physics-based battery 
degradation and powertrain energy consumption models 
[16]. The model simulates the impacts of charging 
behavior, charging rate, driving patterns, and multiple 
energy management modules on battery capacity degra-
dation. It offers a valuable assessment of how different 
chargers impact battery degradation, drawing from 
drivers' travel behaviors. Additionally, it provides an 
approximation of the comprehensive ownership costs 
associated with EVs. In alignment with the BREVO model, 
taking into account real-world statistical data regarding 
the daily travel patterns of drivers in the U.S., this study 
employs RL to offer drivers recommendations for both 
charger selection and optimal charging durations. The 
objective is to balance cost-effectiveness and battery 
lifetime. This aims to address the daily travel needs while 
also minimizing the total cost of charging and potential 
battery degradation resulting from the charging process. 
Choosing the best charger type every day for the battery 
lifetime may result in the least amount of battery degra-
dation and cost after a year, however, it may cause not 
having enough battery charge for completing the day, 
especially for the days in which the travel demand is 
high. On the other hand, choosing a faster charger type 
every day may cause more battery degradation and a 
higher cost even though it ensures enough battery 
charge to satisfy the travel demands of every day. For 
these reasons, it is crucial to find a balance that optimizes 
battery degradation and charging costs. It must be noted 
that the BREVO model is one of the unique models that 
combine drivers’ travel patterns and different charger 
types to compute the real-time energy consumption and 
the battery degradation rate. To do this, it considers 
variety of aspects such as air temperature, HVAC usage, 
braking regenerative system, etc. This study takes 
advantage of the BREVO model's original idea of 
combining drivers’ travel patterns and different charger 
types and uses it to optimize battery degradation-
charging costs balance while satisfying the drivers’ travel 
demands. Instead of using the real-time energy consump-
tion and battery degradation rates that BREVO outputs, 
this study uses fixed numbers described in the following 
sections as a start. The next steps of this research 
include incorporating the outputs of BREVO into the 
RL model.

This paper consists of four sections. Section one 
discusses some of the literature on the field and provides 
the motivation and objective of the study. Section two 
delivers a summary of the theory behind RL. Section three 
explains data, assumptions, and methodology used in this 
study. The last section provides summaries and 
conclusions.

Reinforcement Learning
RL involves learning what to do in an unknown environ-
ment or what actions to take based on the current state 
to maximize a numerical reward [2]. It is one of the three 
basic machine learning paradigms along with supervised 
learning and unsupervised learning.

There are four main elements of RL: an environment, 
an agent, a policy, and a reward. An agent is someone 
who learns and makes decisions. The outside world that 
the agent lives in and interacts with is called the environ-
ment. The process revolves around an active decision-
maker, the agent, interacting with its environment, where 
the agent strives to achieve a goal despite not always 
knowing what to expect from the environment. The 
agent’s decisions are called actions. The actions are 
allowed to impact the future state of the environment 
(e.g., the car’s future battery capacity and the future 
battery charge level), therefore impacting the actions 
available to the agent at later times. Making the right 
decision involves considering the future outcomes of 
actions, which may, in turn, call for the ability to anticipate 
or plan ahead.

A policy, denoted by π, outlines how the learning 
agent should behave at a specific moment. In simpler 
terms, it is like a guide that tells the agent what actions, 
At, to take at a time t when it encounters certain states, 
St, in the environment.

A reward at a time t, denoted by Rt, is a numerical 
value the environment sends to the agent as a result of 
the agent’s decision/action and the current state of the 
environment.

Figure 1 diagrams the agent– environment 
interaction.

The agent’s goal it to maximize the expected cumula-
tive discounted reward:
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  FIGURE 1    The agent-environment interaction in RL
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There exist different RL methods for finding the 
optimal solutions. The remaining part of this section 
focuses on the Q-Learning algorithm which is the algo-
rithm used for the EV setup.

Q-Learning
Under a fixed given policy π, let ( ), ,t t t t tQ S A G S A =  ∶  

be  the expected cumulative discounted reward after 
taking the action At in the state St, at a time t.

The target (or optimal) Q-value for this policy is

( )
( )
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∶ , as the goal is to 

take the action that will maximize the expected cumula-
tive reward in the next state. Here, ( )1tS +  is the space 
of actions available at state St + 1.

The agent starts with an initial state S, chooses an 
action using the policy π derived from the Q-value, 
observes the reward R and the next state S′, and the 
current Q-value of the state S is updated to
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where α ∈ [0, 1] is called the learning rate and it deter-
mines how fast the Q-value is updated. The process 
continues until the agent reaches its final state.

Provided that all state-action pairs are visited infinitely 
many times, Q has been proved to converge with prob-
ability 1 to Q∗.

Method and Assumptions
As mentioned in the first section, the purpose of this 
study is to implement RL in an EV set up to provide 

guidance for drivers to maximize battery lifetime and 
minimize the total charging costs over a one-year 
timespan while meet drivers’ daily travel demands.

The agent in the RL algorithm corresponds to the 
driver in this setting. The environment on the other hand 
includes information of the driver’s daily travel demand, 
the EV’s daily energy consumption, and available charging 
times at night. In every day of a whole year (365 days), 
the driver starts the day with a specific amount of charge 
in the battery and this battery charge decreases based 
on the mileage and the energy consumption of that day. 
The agent’s task is to find the best charger type among 
five different options with the best charging time that will 
minimize the battery degradation and the cost of charging 
after a year while meeting the next day’s travel demand 
by a driver. The decisions of charger types and charging 
times form the actions the agent or the driver chooses. 
Based on the action of charger type and the charging 
time, battery capacity and battery charge get updated, 
and this updated information builds the current state of 
the RL algorithm. This current state determines whether 
the driver’s travel demand on the next day will be satisfied 
or not. Figure 2 shows the agent – environment interac-
tion in this specific setting.

Data Used
Daily Travel Demand  Based on the Bureau of 
Transportation Statistics, 2017, daily mileage information 
for 365 days is taken from a fixed gamma distribution 
with the shape parameter 1.92 and the scale parameter 
15.20 [17]. Figure 3(a) shows the distribution of the data.

Daily Energy Consumption  The daily energy consump-
tion rate is taken from a uniform distribution with the 
lowest value of 13 kWh/100km and the highest value of 
25.3 kWh/100km. The low and the high values are based 
on the general investigation results on EV energy 

  FIGURE 2    Agent-environment interaction in EV setting
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consumption rates from the fueleconomy.gov [18]. For 
example, based on the comparison results in the 
fueleconomy.gov, the 2023 model Tesla Model S and 
Toyota bZ4X have an average of 17.4 kWh/100km daily 
energy consumption rate, whereas the 2023 Nissan Leaf 
SV has 19.3 kWh/100km and the 2023 Ford Mustang 
Mach-E AWD has 22.4 kWh/100km. This number is as 
low as 14.9 kWh/100km for the 2023 Hyundai Ioniq 6 Long 
range RWD 18-inch wheels [18]. For simplicity, this model 
assumes a uniform distribution of daily energy consump-
tion rates between 13 and 25.3 kWh/100km. The distribu-
tion graph is given in Figure 3(b).

Available Charging Hours  The available charging time is 
defined by the difference between the time that the driver 
arrives home in the evening and the time that they leave 
home for work/daily errands on the next day. This study 
assumes the available charging time is in the interval [0, 
12] in hours and is taken from a fixed prescribed distribu-
tion, as shown in Figure 3(c). For simplification, the study 
assumes that the driver charges the EV only at home at 
night; and all charger types are optional for use.

Battery Capacity and Charger Types  Based on 2024 
Nissan Leaf SV Plus, the initial battery capacity of the 
vehicle is assumed to be 60 kWh [19]. In the model, four 
different charger type is considered. These are Level 1 
charger, Level 2 charger, DC fast charger (DC FC) and 
extreme fast charger (xFC). The features of these charger 
types are shown in Table 1. Daily battery degradation rate 
gives how much of the battery becomes unusable after 
charging the vehicle with the selected charger type. For 
example, charging the vehicle with the Level 1 charger 
causes 0.002‰ of the initial battery capacity to 
be unusable; meaning that after using Level 1 charger on 
day one will decrease the battery capacity from 60 kWh 

to 0.000260 60 59.9999
100

− × =  kWh. Charging power 

determines amount of energy charged to the vehicle by 
time. For example, if the current charge of the battery is 
40 kWh, then charging the battery with the Level 1 charger 
for 2 hours will bring the battery charge to 
40 + 1.8 × 2 = 43.6 kWh; and the cost of charging will 

be 0.13 × 1.8 × 2 = $0.468. The battery model is from the 
BREVO model and described in [16] in detail.

Reinforcement Learning Elements
As stated above, the EV driver works as the agent in the 
algorithm. The remaining elements of the RL specific to 
this environment are explained in the following 
subsections.

Action Space  The action space  is the space of all 
possible actions the agent can choose from. This model 
contains 70 different actions in the form of an array 
[ChargerType, ChargingTime], where the charger type 
could be one of the four charger types listed in the Battery 
Capacity and Charger Types section, plus the option of 
no charging; and charging time is any value in the set 
{0.25,0.5,1,2,3,...,12} in hours.

Observation Space  Observation space   is the space 
of all possible states that the EV can have. At the end of 
each day, the agent/driver gets informed about the car’s 
current state in the form of an array [BatteryCapacity, 
BatteryCharge]. The initial state is assumed to 
be S0 = [60, 60] in kWh. This space is continuous as both 
battery capacity and battery charge are values in the 
continuous interval [0, 60].

Reward  After each action is calculated, if the driver 
chooses to charge, they receive a negative reward for 
causing battery degradation and increasing cost. The 
value of the rewards is determined by the rate of degra-
dation and by the cost given in Table 1. If they choose no 
charge option, they receive a small positive reward.

The goal is to complete the year with wise charging 
decisions to have a good battery capacity with the least 
amount of cost. As the driver receives negative rewards 
if they choose to charge the vehicle, the cumulative 
reward mathematically decreases as days pass. Since the 
algorithm may stop before the time reaches the 365th 
day, and the objective is to maximize the cumulative 
reward, it is crucial to have more cumulative reward as 

  FIGURE 3    From left to right (a) Daily mileage; (b) daily energy consumption rate; and (c) daily available charging hours
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more days proceeded. For this reason, after the appro-
priate rewards corresponding to the action, +70 is added 
to the reward, except for the very last step/action that 
causes the algorithm to stop. See the Algorithm 1 
presented in Figure 4 for the reward function. In the 
pseudocode R0 corresponds to the number portion of 
the daily degradation rate, R1 corresponds to the charging 
power, and R2 corresponds to the charging price from 
Table 1 corresponding to the chosen charging type.

Algorithm  The driver starts Day 1 with the initial state

	 0BatteryCapacity,BatteryCharge 60,60S   = =   	

At the end of the day, based on the mileage informa-
tion and the energy consumption rate of Day 1 the battery 
charge decreases. For example, if the energy consumption 
rate of the first day is 20kWh/100km (equivalent to 
20kWh/62.137miles) and the driver traveled 30 miles, then 
the battery charge at the end of the first day becomes

	 2060 30 50.344kWh
62.137

− × = 	

The driver chooses an action of the form [ChargerType, 
ChargingTime]. For example [Level 2, 5] means that the 
driver charges their car with the Level 2 charger for 5 
hours. As a result of this action, the battery capacity 
decreases, and the battery charge increases by the values 
in Table 1 and by the computations explained in the 
Battery Capacity and Charger Types section. Note that, 
the battery charge must be  less than or equal to the 
battery capacity. The charging stops when the battery 
charge reaches its maximum, namely when it reaches the 

current battery capacity, regardless of how long the 
charging time has been chosen. The reward is received 
based on the updated time (if updated) the vehicle has 
been charged. At the end of this process, the new state 
becomes and the driver receives their reward according 
to the function presented in Figure 4.

	 1 UpdatedBatteryCapacity, UpdatedBatteryCharge ,S  =   	

Finally, whether the agent/driver will continue this cycle 
or not is determined by a function. If S1[0]= 
UpdatedBatteryCapacity ≠0, and S1[1]= UpdatedBatteryCharge 
is enough for next day’s travel demand, then Day 2 starts, 
and the same steps are followed. If S1[0]= 
UpdatedBatteryCapacity =0, or S1[1]= UpdatedBatteryCharge 
is not enough for the next day’s travel demand, then the 
cycle stops and the agent/driver starts over from Day 1. The 
Algorithm 2 given in Figure 5 shows the function that checks 
if the agent can continue its cycle the next day. Again, the 
agent’s goal is to finish 365 days with the maximum reward.

Q-Learning and Hyperparameters  As noted in the 
previous section, Q-Learning algorithm has been used for 
this setup. Q-Learning algorithm is an algorithm involves 
a Q-value for each state-action pair. It is noted that each 
state [BatteryCapacity, BatteryCharge] is an element of 
the continuous interval [0, 60] × [0, 60] meaning that there 
are infinitely many state that the agent can have. To finitize 
state-action pairs, the continuous interval [0, 60] has been 
discretized by dividing it into 60 pieces. As a result, the 
Q-value function is a function defined on a finite set of 
cardinality ( )60 60 70 252000× = × × =  , which means 

there are 252000 Q-values for each possible discretized 
state-action pair.

The initial Q-value for all discretized state S and action 
A is Q(S, A) = 0. The Q-values are updated after an action 
is taken by the rule explained in the RL section.

The agent/driver was trained in the environment 
using the algorithm explained in the previous section 
60,000 times. This means the agent went through the 
365-day cycle 60,000 times to figure out the best possible 
actions for each state. 60,000 is called the number of 
episodes. By the construction of the algorithm, not every 
episode lasted for 365 days. The total training time took 
no more than 30 minutes.

In the RL section, it was mentioned a policy and two 
hyperparameters, α ∈ [0, 1], the learning parameter, and 

TABLE 1  Charging types and features used in the model

Charger Type
Charging 
Power (kWh)

Charging 
Price ($/kWh)

Daily Battery 
Degradation 
Rate

Level 1 1.8 0.13 0.002‰
Level 2 7.6 0.13 0.004‰
DC FC 60 0.26 0.006‰
xFC 400 0.52 0.01‰

  FIGURE 4    Reward Function

  FIGURE 5    Done Function
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γ ∈ [0, 1], the discount factor. These are the parameters 
to be chosen. In this study they are chosen as follows:
•• Policy: The RL policy determines how the agent 
chooses its actions. It gives a ratio of exploration 
and exploitation. The exploration allows the agent to 
choose its actions randomly and possibly take 
different actions leading it to observe different 
states. The exploitation helps the agent choose the 
best action for the current state learned from the 
previous experiences.

In this sense, the policy used in this work is an 
ε – greedy policy in which the actions are chosen 
randomly with probability ε, and the best action is 
chosen with probability 1 − ε. In the beginning ε is set 
to ε = 1 and after each episode it is set to decrease by 
the exponential decay rate of 0.0001 with the minimum 
ε = 0.01. The formula of the decrease is as follows:

	
( )
( ) 0.00010.01 1 0.01

decayrate episode
min max min

episode

e

e

ε ε ε ε − ×

− ×

← + −

← + −
	

In this way the agent chooses its actions randomly 
in the beginning and explore more, and as the episodes 
pass by it starts choosing the best actions that it 
learned from the previous episodes with a larger prob-
ability to maximize the reward.

•• Learning Parameter α: The beginning α is set to 
be α = 0.2 and after each episode, it is set to 
decrease by the exponential decay rate of 0.00002 
with the minimum α = 0.001. A decreasing learning 
parameter is preferred because, in the beginning, 
the agent does not know much about the 
environment, so it is a good idea to update the 
q-values quickly and learn faster by taking big steps. 
As it gets more experienced in the environment it 
gets better at making decisions, so it means it is 
closer to its goal. In this stage, it is better to have a 
small learning rate for more precise and more stable 
q-value updates to avoid oscillations and getting 
stuck in the suboptimal solution. The formula of the 
decrease is as follows:

	
( )
( ) 0.000020.001 0.2 0.001

decayrate episode
min max min

episode

e

e

α α α α − ×

− ×

← + −

← + −
	

•• Discount Factor γ: Discount factor determines 
agent’s preference for future rewards than the 
immediate rewards. A γ relatively close to 1 will 
cause agent to take actions considering the long-
term effect of those actions, i.e., the future rewards 
more. This means, it is reasonable to decrease the 
discount factor, γ, at the end of every day (after 
every step/action taken) as the agent is not going to 
be around long enough to get long-term reward. So, 
it is better to focus on immediate rewards towards 
the end.

In the beginning, γ is set to be γ = 0.5, and after each 
action taken (or after every day) it is set to decrease 
by the exponential decay rate 0.001 with the minimum 
γ = 0.1. Note that here the discount factor is decreased 
after each action instead of after each episode. After 
an episode is over, the discount factor is set back to 
its initial value of γ = 0.5. The formula of the decrease 
is as follows:

	
( )
( ) 0.0010.1 0.5 0.1

decayrate episode
min max min

episode

e

e

γ γ γ γ − ×

− ×

← + −

← + −
	

Results
To measure how well the model does, the results are 
compared to the results where the driver uses the same 
charger type every day of a year for the amount of hours 
they spend at home at night. Figure 7 presents the battery 
capacity decrease and cost increase of each case. The 
battery degradation chart in Figure 7(a) shows that using 
RL decisions to charge the vehicle causes the least amount 
of battery degradation compared to charging the vehicle 
with Level 2, DCFC, and xFC in each day of a year. The 
results show that using an xFC hurts 3.44 ‰ of the 
battery; using DCFC hurts 2.06 ‰ of the battery; and 
using the Level 2 charger hurts 1.38 ‰ of the battery if 
used every day during the whole time the driver is at 
home that night for a year. On the other hand, using the 
charger type and charger time decisions of the trained 
RL agent hurts only 0.8 ‰ of the battery after a year. 
How many times the RL agent chooses different charger 
types are presented in Figure 6. It appears that with the 
daily travel needs of the driver, charging the vehicle every 
night is not necessary.

Throughout the year, it is possible to satisfy the next 
days’ travel needs by not charging the car or by charging 
it for a short time mostly with the Level 1 or the Level 2 
charger. The RL agent chooses the No Charge option for 
127 days; the Level 1 charger for 121 days; the Level 2 

  FIGURE 6    Charger Type Count of RL Decision
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charger for 86 days; the DCFC for 23 days; and the xFC 
for the remaining 8 days.

Note that, in the data used for the available charging 
time, there are 20 days that the available charging time 
is zero hours, meaning that the driver is not at home 
those days, so they do not charge their vehicle. In this 
case, the agent is forced to choose the No Charge option.

When the yearly cost chart in Figure 7(b) is examined, 
it comes into sight that it is more expensive to use the 
DCFC and xFC every day for a year on top of the fact that 
they cause more damage to the battery. On the other 
hand, it seems that using the Level 2 charger every day is 
slightly more budget-friendly than following the RL agent’s 
suggestions. More precisely, the yearly cost of charging is 
$1868.63 with the xFC; $934.31 with the DCFC; $467.16 
with the Level 2 charger; and $637.96 with the RL decisions. 
As seen from these numbers, using RL decisions costs 
around $170 more a year than using the Level 2 charger 
every day. However, when the current battery costs are 
considered, RL offers a better battery lifetime and total 
cost overall than using the same charger type every day.

According to the U.S. Department of Energy Fact of 
The Week #1272 published on January 9, 2023 [20], the 
cost of an EV lithium-ion battery pack declined 89 % 
between 2008 and 2022, however, the estimates for 2022 
are still in the range of $153/kWh. This sums up to around 
$ 9180 for a 60-kWh battery pack. The fact that it provides 
results healthier for the battery, shows that RL can help 
consumers make wise charging decisions to prolong the 
lifetime of their vehicle and reduce the total cost of 
ownership.

The monthly costs of each scenario and the table 
containing the exact remaining battery capacities and 
total costs after a year are presented in Figure 8 and 
Table 2 respectively. In Figure 8, a cost comparison of 
each case is given and it can be deduced that RL can 
reduce charging costs to as low as $30 with an average 
of $53 per month, whereas these numbers are signifi-
cantly higher for the DCFC and the xFC cases. As shown 
in Table 2, the exact capacity of the usable battery and 
the exact charging costs can be observed for each case.

  FIGURE 7    From left to right (a) Battery Capacity Chart; and (b) Cost Chart for Different Scenarios

  FIGURE 8    The monthly cost of each scenario

TABLE 2  Usable battery and cost table after a year

Charger Type

Usable 
Battery in the 
Beginning 
(kWh)

Usable 
Battery After 1 
Year (kWh)

Total Cost 
After 1 Year

RL 60 59.95178 637.9561
Level 2 60 59.9171 467.1567
DCFC 60 59.8763 934.3134
xFC 60 59.7934 1868.6269

Downloaded from SAE International by Shiqi(Shawn) Ou, Saturday, April 06, 2024



	 8 REINFORCEMENT LEARNING IN OPTIMIZING THE ELECTRIC VEHICLE BATTERY SYSTEM COUPLING

It can be seen that the figures do not include the case 
of using Level 1 charger every day. The reason for this is 
that considering the driver's daily available charging times 
and daily energy consumption, using a Level 1 charger 
every day that the driver is able to charge their vehicle 
will not be able to meet the driver's travel demands for 
more than one day. The driver must use a Level 2, DC 
fast, or an xFC to complete these days without charging 
during the day.

Conclusions
Following the existing BREVO model, this study employs 
RL into real-world statistics of drivers and vehicles in the 
United States. It demonstrates that given the daily mileage 
and energy consumption information of a driver, RL can 
suggest an appropriate charger type and charging time 
to offer a longer battery life and a better charging cost-
saving. The study’s contribution lies in employing RL 
considering both battery lifetime and charging cost 
aspects of total cost of ownership using the real-world 
statistics of drivers in the United States. However, there 
are a couple aspects of this work that should be noted.

	 1.	 The trained model is driver specific. The final 
policy depends heavily on the driver’s daily travel 
demand and the available charging times the 
driver has. Because the agent decides whether to 
charge based on the available charging times and 
the next day’s mileage information. This means 
the trained model may not perform well on 
another driver with different driving patterns.

	 2.	 Under the assumption that the driver will have 
similar driving habits each year, the trained model 
can be implemented for future operation with 
small modifications (such as the starting battery 
capacity should decrease). Otherwise, the model 
should continue to be trained with the fresh data 
from the driver.

Moreover, there are a couple aspects of this work 
that need further attention to improve.

	 1.	 Hyperparameters: Performance of machine 
learning algorithms closely related to the chosen 
hyperparameters. For this study, several of them 
have been tested and the best ones found were 
explained in the previous section. However, one 
can choose to run the algorithm with different 
hyperparameters 
to observe whether the results improve.

	 2.	 Data used: The study uses a data generated by 
several distributions with the parameters 
gathered from the Bureau of Transportation 
Statistics for the daily mileage data and previous 
studies for the daily energy consumption data. 
The next step is to incorporate the BREVO model 
into this study in more depth. BREVO model 
computes the daily mileage and energy 
consumption rate using real-life consumer time 

series data containing information on the speed 
of the vehicle at each second of the day, the 
temperature information of the cabin and the air, 
and several other factors such as HVAC system 
On/Off, etc. The next step of this study aims to 
run the algorithm discussed in this paper on the 
output data of the BREVO model to achieve 
similar results.

	 3.	 Constant charging cost and battery degradation 
rates: In real life, battery degradation rates and 
charging costs are not always constant. As a 
starting point, this study assumes that the 
battery degradation and the charging costs are 
constant. Unlike the BREVO model, the model 
also assumes that the battery degradation 
happens only by charging. However, under these 
assumptions this study achieves promising 
results and encourages a deeper work for more 
realistic scenarios. The future work of 
incorporating the outputs of BREVO model into 
the RL model will remove the assumptions of a 
constant battery degradation rate, and in 
addition, will enable the usage of real energy 
consumption rates instead of a fixed one.

Data Availability
The algorithm and model training files can be found on 
GitHub (https://github.com/altineri/EV-Environment)
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